Predicting Securities Fraud Settlements and Amounts: A Hierarchical Bayesian Model of Federal Securities Class Action Lawsuits
Document Type
Article
Publication Date
9-1-2012
Abstract
This paper develops models that predict the incidence and amount of settlements for federal class action securities fraud litigation in the post-PLSRA period. We build hierarchical Bayesian models using data which comes principally from Risk metrics and identify several important predictors of settlement incidence (e.g., the number of different types of securities associated with a case, the company return during the class period) and settlement amount (e.g., market capitalization, measures of newsworthiness). Our models allow us to estimate how the circuit court a case is filed in as well as the industry of the plaintiff firm associate with settlement outcomes. They also allow us to accurately assess the variance of individual case outcomes revealing substantial amounts of heterogeneity in variance across cases.
Keywords
class, action, securities, fraud, lawsuit, litigation, bayesian, hierarchical
Publication Title
Journal of Empirical Legal Studies
Repository Citation
McShane, Blakeley B.; Watson, Oliver P.; Baker, Tom; and Griffith, Sean J., "Predicting Securities Fraud Settlements and Amounts: A Hierarchical Bayesian Model of Federal Securities Class Action Lawsuits" (2012). All Faculty Scholarship. 409.
https://doi.org/10.1111/j.1740-1461.2012.01260.x
Publication Citation
9 Journal of Empirical Legal Studies 482 (Sept. 2012).