Although empirical scholarship dominates the field of law and finance, much of it shares a common vulnerability: an abiding faith in the accuracy and integrity of...
small, specialized collection of corporate governance data. In this Article, we unveil a novel collection of three decades’ worth of corporate charters for thousands of public companies, which shows that this faith is misplaced.

We make three principal contributions to the literature. First, we label our corpus for a variety of firm- and state-level governance features. Doing so reveals significant infirmities within the most well-known corporate governance datasets, including an error rate exceeding eighty percent in the G-Index, the most widely used proxy for “good governance” in law and finance. Correcting these errors substantially weakens one of the most well-known results in law and finance, which associates good governance with higher investment returns. Second, we make our corpus freely available to others, in hope of providing a long-overdue resource for traditional scholars as well as those exploring new frontiers in corporate governance, ranging from machine learning to stakeholder governance to the effects of common ownership. Third, and more broadly, our analysis exposes twin cautionary tales about the critical role of lawyers in empirical research, and the dubious practice of throttling public access to public records.

INTRODUCTION.. 3
I. THE STATE OF PLAY IN EMPIRICAL CORPORATE GOVERNANCE
 RESEARCH ... 9
 A. Demand ... 10
 B. Supply ... 14
II. RECLAIMING CORPORATE GOVERNANCE ... 25
 A. Charter Texts .. 25
 B. Data Labels ... 29
 C. Reassessing What We Know (or Thought We Knew) about Corporate Governance .. 34
 D. Aggregating G-Index Errors .. 38
 E. The Arbitrage Value of Good Governance Revisited 42
III. CORPORATE GOVERNANCE AS “BIG DATA” .. 47
 A. Document-Level Trends .. 47
 B. Latent Semantic Content .. 51
 C. Supervised Learning Tools .. 58
IV. IMPLICATIONS AND THE ROAD AHEAD ... 61

University Business Law Workshop, the NYU Law School Law and Economics Seminar, the Columbia Law School Faculty workshop, the UC Berkeley Law and Economics Workshop, the Corporate Law Academic Webinar Series (CLAWS) Workshop, and the 2021 American Law and Economics Association conference. The production of this article involved a research team too large to mention in this footnote, and we therefore list them (with our great appreciation) in Appendix A. We also thank the librarians at the Columbia Law School, the University of Virginia School of Law, the University of Utah S.J. Quinney College of Law, and the University of Wisconsin Law School. All errors are ours.
INTRODUCTION

Corporate governance lapses are blamed for some of the most ignominious business catastrophes in recent history, from Enron’s epic collapse,1 to Wells Fargo’s $3 billion fine,2 to the implosions of WeWork3 and Theranos.4 And in the wake of each debacle, legions of empirically minded researchers soon followed,5 marshaling mountains of quantitative data to unpack lessons about where governance failed and how it can be improved.6 Their collective efforts have met with a ravenous reception: empirical corporate governance research now dominates the law and finance landscape.7

1 See Woodrow W. Clark & Istemi Demirag, Enron: The Failure of Corporate Governance, J. CORP. CITIZENSHIP, Winter 2002, at 105, 105 (“[T]he company both instructed and led its accounting firm into ‘dubious’ financial transactions, which ultimately caused the collapse of Enron and may have ended Andersen as an independent firm”).

6 See generally Paul Gompers, Joy Ishii & Andrew Metrick, Corporate Governance and Equity Prices, 118 Q.J. ECON. 107 (2003) (using empirical data to construct a governance index as a proxy for level of shareholder rights); Rafael La Porta, Florencio Lopez-de-Silanes, Andrei Shleifer & Robert W. Vishny, Law and Finance, 106 J. POL. ECON. 1113 (1998) (examining the legal regimes in forty-nine countries and explaining the correlated discrepancies in protections afforded to investors).

7 As of October 25, 2021, La Porta et al.’s interrelated article has been referenced 23,811 times in academic journals, including over 839 citations in law review articles. As of October 25, 2021, Gompers et al.’s article was cited 9,970 times, including over 215 law review articles. See infra Part I.
routinely informing government policy,9 real-world practice,9 and vigorous academic debate.10 By any reasonable accounting, the topic is a major success story in the interdisciplinary study of law.

And yet a potentially fatal flaw has long lurked just beneath this seemingly resplendent facade: shallow data. Many of the preeminent contributions in empirical corporate governance depend commonly (and critically) on a surprisingly slender stockpile of datasets whose provenance is frustratingly obscure. But virtually no one has seriously attempted to gauge the integrity of these pivotal inputs.11

Until now. In this article, we unveil a new resource that allows researchers—for the first time—to investigate the fidelity of foundational corporate governance metrics. And the results aren’t pretty. We demonstrate that several of the most heavily relied upon governance datasets suffer from

inaccuracies so extensive as to call into question some of the landmark insights of the field.

The resource we unveil is anchored by a first-of-its-kind textual corpus representing over a quarter-century’s worth of corporate charters for S&P 1500 listed issuers.\(^\text{12}\) We hand label\(^\text{13}\) a significant subset of these full-text documents for characteristics that feature prominently in the governance literature. And, rectifying a longstanding deficit in the field, we make the corpus publicly available as open source, in the hope that it will catalyze and improve future research. Collectively, we refer to our raw corpus and labels as the “Cleaning Corporate Governance” (CCG) database. The database provides researchers with an unprecedented capability to analyze the composition and structure of the very textual heart of corporate governance—certificates of incorporation—across firms, industries, and jurisdictions, and over time.

But it is substantially more than that. The CCG also allows researchers—for the first time—to reassess foundational insights from law and finance. We use it, for example, to show that the ingredients of the most renowned corporate governance index in the field, the “G-Index,”\(^\text{14}\) are riddled with inaccuracies, resulting in an estimated error rate exceeding 80%—a rate that gets worse over time. And these inaccuracies are not simply garden-variety statistical anomalies. Rather, we demonstrate that they unsettle even one of the most famous results in the field: that systematically investing in firms with “good governance” delivers returns that significantly eclipse the market.\(^\text{15}\) When reanalyzed with corrected data, this result changes appreciably. To the extent any part of it survives, it does so in a materially attenuated form.

\(^\text{13}\) Labeling is a procedure whereby a third party (typically a natural person with relevant expertise) evaluates, ranks, or categorizes the substantive content of documents in a corpus. See Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel Fisher & Denis Charles, Structured Labeling to Facilitate Concept Evolution in Machine Learning (describing the process of labeling data to support machine learning) in CHI ’14: PROCEEDINGS OF THE SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS 3675, 3675 (2014).

\(^\text{14}\) See Gompers et al., supra note 6, at 109 (describing the construction of the “Governance Index” as a proxy for the balance of power between shareholders and managers).

\(^\text{15}\) See id. at 123 tbl.VI.
The value of the CCG is not limited to reassessing prior results in the corporate governance literature, however. It also helps lay the foundation for the next chapter of corporate governance research at a critical moment, when we stand at the crossroads of several new and exciting directions the field might pursue. Machine learning and computational text analysis, for example, are becoming increasingly prominent in many areas of legal scholarship but have yet to gain a significant foothold in corporate governance. The CCG is

ideal for these methodologies, and we deploy several of them here. In particular, we use them to corroborate our error correction efforts and to shed light on a host of deeper governance questions—including whether legal origins matter and how governance evolves during periods of disruption like the Financial Crisis. The emergent scholarly literature on “common ownership” can also benefit from the CCG. While this literature raises troubling questions about whether large passive investors are conduits for anticompetitive behavior, its proponents still struggle to pin down the precise mechanism through which passive ownership translates into conscious parallelism. The CCG provides an intriguing tool for smoking out such a mechanism (if one exists) by dusting for fingerprints left at the scene of the crime, as manifested in stockholder rights and governance structures in our corpus. Similarly, the CCG can help reveal how governance shapes (and is shaped by) the very purpose of the corporation itself, particularly as scholars and policy makers take the concept of stakeholder governance more seriously. Preexisting governance metrics—which tend to focus exclusively on shareholder interests—have little to say about this topic, but the CCG is a ready resource for generating new measures that bear directly on non-shareholder constituencies.

18 See generally José Azar, Martin C. Schmalz & Isabel Tecu, Anticompetitive Effects of Common Ownership, 73 J. FIN. 1513 (2018) (discussing the potential anticompetitive effects of common ownership among publicly traded companies within an industry); Einer Elhauge, Horizontal Shareholding, 129 HARV. L. REV. 1267, 1316 (2016) (concluding that horizontal shareholding can “help explain fundamental economic puzzles” such as executive compensation, corporate expansion strategy, and economic inequality); Eric A. Posner, Fiona M. Scott Morton & E. Glen Weyl, A Proposal to Limit the Anticompetitive Power of Institutional Investors, 81 ANTITRUST L.J. 669, 670, 701 (2017) (proposing a policy of limiting major institutional investors to owning a maximum one percent stake in each firm within a given oligopolistic industry); Fiona Scott Morton & Herbert Hovenkamp, Horizontal Shareholding and Antitrust Policy, 127 YALE L.J. 2026, 2034–35 (2018) (arguing that although the mechanism by which common ownership leads to higher prices is unknown, a precise understanding of the mechanism is unnecessary under the Clayton Act’s “effects test”).

19 See C. Scott Hemphill & Marcel Kahan, The Strategies of Anticompetitive Common Ownership, 129 YALE L.J. 1392, 1398 (2020) (“Missing from the [common ownership] debate thus far has been a systematic explication and assessment of the causal mechanisms that might link common ownership to higher prices.”).

20 See, e.g., Elizabeth Warren, Opinion, Companies Shouldn’t Be Accountable Only to Shareholders, WALL ST. J. (Aug. 14, 2018, 7:01 PM), https://www.wsj.com/articles/companies-shouldnt-be-accountable-only-to-shareholders-1534287687 [https://perma.cc/C3RW-ADRQ] (proposing a bill that would have the effect of requiring “corporate directors to consider the interests of all major corporate stakeholders—not only shareholders—in company decisions”); Robert J. Rhee, A Legal Theory of Shareholder Primacy, 102 MINN. L. REV. 1951, 1953 (2018) (“Despite persistent criticism, the idea of shareholder primacy has been widely accepted. However, its legal status remains uncertain even today.”); Cathy Hwang & Yaron Nili, Shareholder-Driven Stakeholderism, U. CHI. L. REV. ONLINE (Apr. 15, 2020), https://lawreviewblog.uchicago.edu/2020/04/15/shareholder-driven-stakeholderism-hwang-nili [https://perma.cc/G8YZ-6TV9] (arguing that shareholders, as opposed to managers, have been the driving force behind improved stakeholder governance).
More broadly, this Article exposes two systemic issues that should concern empirical researchers of all stripes. The first is that corporate governance research has a critical need for lawyers and lawyerly judgment. We conjecture that a principal reason that data errors have propagated for so long in this field is that lawyers were exiled (or relegated themselves) to the back seat of the data aggregation project. In their absence, non-lawyers were left to do much of the work, proceeding—as best they could—to dispense judgments about the effects of formal legal documents, statutes, case law, and the like. While perhaps a commendable first effort, such casual empiricism no longer suffices. Lawyers can and must play a more central role in empirical corporate governance research, reclaiming the function for which they are professionally trained.

Second, our enterprise underscores the seemingly banal observation that data availability matters. A lot. Another likely reason for poor data quality in this area is that corporate governance documents are surprisingly difficult to collect, organize, and analyze. Many notable jurisdictions (such as Delaware) actively throttle public access to their rich documentary trove, tossing in exorbitant access fees for good measure. Federal regulators (such as the SEC) provide several governance documents for free, but only in highly disorganized form. And the few private enterprises that have attempted to organize them also protect their creations aggressively with paywalls, user restrictions, and ominous litigation threats. Although the CCG partially frees the next generation of corporate governance scholars from these restraints, we nonetheless join with others (in law and elsewhere) in calling for better and less restrictive public access to public documents.

The remainder of this Article proceeds as follows. Part I assesses the most important empirical corporate governance studies to date, and the role of the most critical datasets within them. We also observe that because of the

21 See infra notes 95–97 and accompanying text.
22 See infra notes 104–108 and accompanying text.
prohibitive challenges in obtaining underlying textual data, most researchers have relied on commercial third-party sources. Part II describes our research design and data collection protocols, providing a descriptive snapshot of the size, reach, and scope of the CCG. We then demonstrate that corporate charters are highly dynamic documents, amended with increasing frequency.25 Yet they have also progressively become more “lawyered,” growing longer, more technical, and less readable than their forebears of a quarter century ago. More provocatively, this Part uses the CCG to document the alarming inaccuracy of prominent corporate governance indices, showing that even one of best-known results in the field attenuates considerably in the presence of cleaned data. Part III explores important future uses of the CCG, including its ability to generate novel insights about the state and evolution of corporate charters. Among other things, we illustrate how the database lends itself to a wide variety of emergent computational and machine learning techniques, spotlighting several applications. Part IV discusses the broader implications of our study, situating it within the larger enterprise of empirical legal studies. A final section concludes.26

I. THE STATE OF PLAY IN EMPIRICAL CORPORATE GOVERNANCE RESEARCH

This article puts forward, for the first time, a clean, open-source, researchable corpus of corporate charters—the documentary DNA of corporate governance. But before proceeding to describe the CCG database itself, it is important to underscore why this data resource is so important. While there are many moving parts, two forces predominate: supply and demand. We discuss each below, followed by a discussion of the practical constraints that face researchers who endeavor to collect raw corporate governance documents.

26 Several appendices (both attached and online at www.publiccompanycharters.com) provide additional details about our study design, results, robustness checks, and access to the corpus itself.
A. Demand

The field of law and finance is, in relative terms, extremely young. Until about twenty-five years ago, finance and business law researchers typically sailed on scholarly ships that passed in the night: financial economists gravitated toward theoretical models and data-driven explorations, while legal scholars immersed themselves in institutional detail, exploring rich contextual structures that seemingly defied quantification.27

Change began to take hold, however, with a series of seminal articles in the mid-1990s. A collection of prominent finance scholars set about exploring how legal institutions affect profit generation, market value, and other relevant corporate outcomes. At the vanguard of the effort were several provocative papers by La Porta, Lopez-de-Silanes, Shleifer & Vishny (LLSV).28 LLSV explored how formal country-level shareholder protections are correlated to or predict several important measures of company and shareholder value. To quantify their analysis, LLSV canvassed interjurisdictional protections to formulate an “antidirector rights index”—a country-level proxy for shareholder rights. LLSV’s collective contributions were an instant classic, and for good reason: they demonstrated concretely how law “mattered” for nearly all aspects of finance. Tens of thousands of articles have cited LLSV, in both widely respected law and finance/economics journals.29

Using the index, LLSV and hundreds of others generated a laundry list of provocative and influential findings.30 And legions of other articles to date have incorporated LLSV’s index or its underlying data as inputs31 to establish connections between shareholder protection and the

27 The common use of quantitative metrics to analyze corporate governance is very much a post-1995 phenomenon. See generally sources cited supra note 10.

29 According to Lexis, LLSV’s article was referenced 23,811 times as of October 25, 2021, including in some of the highest-profile journals, such as the Quarterly Journal of Economics, Journal of Financial Economics, and the Review of Financial Studies.

30 See, e.g., sources cited supra notes 28.

31 Spamann, supra note 10, at 468. For instance, Licht et al. used it to analyze the relationship between culture and the level of minority shareholders’ and creditors’ protection, finding that national cultural priorities consistent with public acceptance of litigation correlated with indices of creditor and shareholder voting rights. Amir N. Licht et al., supra note 10. Reese and Weisbach also used the index, finding that companies in legal systems with less shareholder protection were more likely to cross-list in the United States. Reese & Weisbach, supra note 10, at 102.
size of capital markets, ownership dispersion, firm valuation, and earnings management.

As influential as LLSV’s contributions were, it soon became evident that their approach was just the tip of a much larger corporate governance iceberg. As lawyers know all too well, much of contemporary business law consists of a set of background rules that can give way if firms take steps to modify their application or opt out completely. Setting the jurisdiction as the unit of analysis inevitably misses (or mushes) this firm-level heterogeneity.

That lacuna was soon to be filled by another watershed contribution, this time courtesy of Gompers, Ishii, and Metrick (GIM). GIM introduced a then-novel third-party dataset created by the Investor Responsibility Resource Center (IRRC), which purported to quantify shareholder protections at the individual firm level, accounting for both jurisdiction-level differences and firms’ private ordering decisions. Their data tracked a cross section of large U.S.-traded issuers over several years. Consequently, the governance data that GIM marshaled included much of the granularity and panel structure that LLSV lacked, facilitating a far richer analysis of the interaction between governance and outcomes.

Not to be out-Mamboed in the governance index dance-off, GIM proposed an index of their own—the “G-Index”—which represented the sum of 24 binary variables from their dataset related to shareholder protections, antitakeover measures, and governance rights. They offered the G-Index as a rough proxy for good governance: lower G-Index scores corresponded to more “democratic” or shareholder-friendly firms, while higher scores corresponded to “dictatorial” or management-friendly firms. And when the authors projected these scores onto several financial performance metrics, their findings were noteworthy: they showed that companies with relatively democratic governance profiles outperformed their more dictatorial counterparts along multiple dimensions, including firm value, profitability,
and growth. But one result in particular stood out: that good governance was also a financial arbitrage opportunity. GIM estimated that a “long-short” investment strategy of (a) buying companies with the most democratic profiles, and (b) selling short the most dictatorial ones delivered a risk-adjusted return that outperformed the market by an eye-popping 9% per year, a wedge that confounded explanation by accepted theories in finance.

If LLSV was an instant classic, then GIM was a mic drop. Notwithstanding its more recent vintage, as of October 25, 2021, GIM has been cited by more than 9,900 academic articles, and it is the seventy-ninth most downloaded paper of all time on the Social Science Research Network. Scores of follow-on papers have either employed the G-Index directly, have attempted to build upon it, or have attempted to test it in other settings.

The decades since GIM’s contribution, in fact, have spawned an alphabet soup of governance indices, all derived directly from the same foundational data used to construct the G-Index. These include the “E-index” (a subset of the G-Index measuring management entrenchment), the “O-index” (a subset of the G-Index that does not include the E-index), and the “D-index” (the Deterrence index, measuring takeover defense), among others. Others have used the G-Index (or its variations) as a jumping-off point for new empirical corporate governance research. One study, for example, relied on the same data to argue that firms with weaker governance structures have smaller cash reserves. Another contribution used the G-Index to test whether weak governance causes diminished stock returns. And yet another
used the G-Index as a proxy for the strength of a firm’s other governance mechanisms to show the significant impact that female directors had on a board’s inputs and firm’s outcomes. Several critics have also emerged, too, questioning the generality and longevity of the G-Index’s relationship to outcomes, and observing that such effects appear to change materially in the periods after the publication of GIM’s study.

While these various follow-on contributions differ in many respects, they have one thing in common: they all place abiding faith in the integrity of the data that impelled GIM. And they have done so—across disparate areas of law, finance, accounting and economics—with considerable zeal. Even those who have come out as critical of the governance index enterprise have based their arguments largely on the indices’ predictive qualities, presuming the accuracy of the underlying indices.

The demand for data-driven corporate governance insights, moreover, transcends academia. It also extends to professional governance advocates, Wall Street investors, and even government regulators. The U.S Securities and Exchange Commission, for example, routinely uses the empirical corporate governance literature—including LLSV and GIM—in rulemaking. For example, a recent proposal to amend federal proxy rules cites both studies, interpreting them to demonstrate that “[s]trong shareholder rights have been transcend academia. It also extends to professional governance advocates, Wall Street investors, and even government regulators. The U.S Securities and Exchange Commission, for example, routinely uses the empirical corporate governance literature—including LLSV and GIM—in rulemaking. For example, a recent proposal to amend federal proxy rules cites both studies, interpreting them to demonstrate that “[s]trong shareholder rights have been used the G-Index as a proxy for the strength of a firm’s other governance mechanisms to show the significant impact that female directors had on a board’s inputs and firm’s outcomes. Several critics have also emerged, too, questioning the generality and longevity of the G-Index’s relationship to outcomes, and observing that such effects appear to change materially in the periods after the publication of GIM’s study.

While these various follow-on contributions differ in many respects, they have one thing in common: they all place abiding faith in the integrity of the data that impelled GIM. And they have done so—across disparate areas of law, finance, accounting and economics—with considerable zeal. Even those who have come out as critical of the governance index enterprise have based their arguments largely on the indices’ predictive qualities, presuming the accuracy of the underlying indices.

The demand for data-driven corporate governance insights, moreover, transcends academia. It also extends to professional governance advocates, Wall Street investors, and even government regulators. The U.S Securities and Exchange Commission, for example, routinely uses the empirical corporate governance literature—including LLSV and GIM—in rulemaking. For example, a recent proposal to amend federal proxy rules cites both studies, interpreting them to demonstrate that “[s]trong shareholder rights have been...
associated with higher firm valuations and better-developed equity markets.\footnote{56} The SEC has cited empirical literature in a proposed rule on investment advisors and broker-dealers,\footnote{57} in a report on M&A disclosure requirements,\footnote{58} and in a proposed rule on accelerated filers.\footnote{59} Earlier this year, the SEC cited LLSV again in a final rule on good faith determinations of fair value.\footnote{60}

Clearly, empirical corporate governance research, and the abecedarian conga line of indices it spawned, have become a centerpiece of both academic discourse and regulatory decision making. That attention, in turn, has stoked demand for more resources (quantitative data in particular) that could power additional insights to help adjudicate policy debates. But a demand for empirical corporate governance resources would remain unrequited without a corresponding supply. As we detail in the next subsection, that supply chain has proven to be limited, expensive, and undependable.

B. Supply

The seemingly insatiable demand for quantitative corporate governance resources has always faced serious supply shortages. Indeed, as provocative as the findings of LLSV, GIM and their progeny were, perhaps their most enduring contributions were the new data they brought to the table, quantifying governance for the first time.

But the sheer novelty of these efforts was also their Achilles’ heel. Turning nebulous bodies of prolix corporate governance texts into concrete, measurable, usable data requires an unusual mélange of quantitative skill, economic intuition, and—most importantly—lawyerly chops. Corporate governance regimes are typically conjured from a dense thicket of documents, statutes, legislative histories, case law, and a superstructure of interpretive canons. Parsing these inputs into usable data is all but impossible without legal training. Even today, very few possess the requisite

\footnote{57} Form CRS Relationship Summary; Amendments to Form ADV; Required Disclosures in Retail Communications and Restrictions on the Use of Certain Names or Titles, 83 Fed. Reg. 21,416, 21,442 nn.233-38, 21,485 nn.575-76 (proposed May 9, 2018) (to be codified at 17 C.F.R. pts. 240, 249, 275, 279).
\footnote{59} Form CRS Relationship Summary; Amendments to Form ADV; Required Disclosures in Retail Communications and Restrictions on the Use of Certain Names or Titles, 83 Fed. Reg. 21,442 nn.233-238.
skills to peel back the layers of this institutional onion. This skill set was rarer still a quarter-century ago.61

The difficulties of "coding law" were immediately apparent even in the early studies that analyzed jurisdictional corporate governance regimes. These studies, starting with LLSV's pioneering work, had to quantify country-level legal protections. To go about doing so, the authors needed to assess—across over four dozen national jurisdictions—six mechanisms for investor protection.62 Having little or no legal training themselves, the authors eventually farmed out the work, surveying local lawyers in each jurisdiction to identify whether the jurisdiction had the various enumerated investor protections of interest.63

The resulting methodology was innovative for its time, but it was also frustratingly opaque. There is scant information about how LLSV identified their respondents or the respondents' expertise. There is also no information on how the authors dealt with inter-respondent inconsistencies. As others soon noticed, these types of inconsistencies proved commonplace.

No one seriously endeavored to interrogate the underlying anti-directors rights index itself until 2010, when Holger Spamann began kicking its tires in a replication study. Spamann used a more systematic approach to recruit and orient foreign-trained lawyers to recode the majority of LLSV's primary jurisdictional data, taking significant care to ensure inter-coder reliability.64 When the dust settled, he found that many of the features contained within the original index were incorrect, and—more importantly—that certain of the most provocative results could not be replicated once the data were corrected.65

Spamann's findings were careful, systematic, and ultimately devastating. More generally, his analysis exposed larger problems that continue to vex empirical corporate governance: the challenge of quantifying jurisdictional legal factors that are themselves somewhat nuanced, the ambiguity that occurs when a statutory mandate is overridden by firms that opt out of it, and the deployment of personnel who had not been trained to assess these factors.

62 The six mechanisms were: shareholder voting by mail, voting without blocking of shares, the limits on shareholders' ability to call a special meeting, whether minority shareholders had proportional board representation or cumulative voting, whether existing shareholders had a preemptive right to buy new issuances of stock, and the types of judicial remedies available to shareholders. La Porta et al., supra note 6, at 1127-28.
63 See, e.g., Spamann, supra note 10, at 467 (thanking over forty lawyers for their contributions).
64 Id. at 470.
65 Id. at 469-70.
consistently. Challenges like these suffused LLSV’s data, and Spamann surmised that the ensuing reliability issues may have been the byproduct of differences in corporate practice66 and the fact that LLSV’s original survey respondents were unclear about whether their remit was to answer questions about formal legal mandates, prevailing private ordering norms, or their own personal experiences.67

By the time Spamann’s deconstruction of LLSV hit the presses, many of the cool kids of corporate governance were already chasing the next rainbow: \textit{firm-level} governance. Zeroing in on a more granular unit of analysis constitutes a considerable improvement (for the reasons detailed above); yet at the same time, the firm-level approach seems susceptible to many of the same vulnerabilities that plagued LLSV. Maybe even worse: coding law consistently at the jurisdiction level is hard enough; layering on firm-level governance can complicate matters considerably. Not only must one correctly interpret when and how companies have attempted to tailor their internal governance affairs, but one must do so against the backdrop of statutory and jurisdictional rules.

Figure 1 conceptualizes some of these difficulties using a planetary metaphor for corporate governance choices. A statute/regulation (represented by the black hole at the system’s center) represents a fixed background rule on corporate governance that applies to companies incorporated in the jurisdiction. Should an entity (represented by the various planets) wish to replace that rule and with its own self-styled regime, it is as though it needs to break the gravitational pull of the statutory mandate.

For certain governance mandates, opting out is impossible, as depicted by the inner red planet. Here, the statutory rule is \textit{immutable}, with a gravitational pull so strong as to trap all objects within its event horizon. If a company within this zone wished to embrace a different regime, its efforts would be null and void.68 In other situations (represented by the successively more distant planets), the gravitational pull of the mandate is weaker. Here,

66 Id. at 473.

67 As Spamann notes in his 2010 review of La Porta et al., supra note 6, practitioners inconsistently interpreted La Porta et al.’s questions. For example, neither Finland nor the United States defaults to cumulative voting, but La Porta et al. coded Finland as zero and the United States as one. Spamann, supra note 10, at 472.

68 Pennsylvania’s famous constituency statute, for example, does not allow companies to waive or avoid the statutory mandate that the board must account for multiple stakeholders’ interests. \textsc{15 Pa. Cons. Stat.} § 1715(b) (2021). See also Robert Goodyear Murray, \textit{Money Talks, Constituents Walk: Pennsylvania’s Corporate Constituency Statute Can Maximize Shareholders’ Wealth}, \textit{48 Buff. L. Rev.} 629, 644 (2000) (opining that Pennsylvania’s constituency statute “is a specific grant of discretion to directors to determine which constituency group’s interests to elevate above others, ranking shareholders as only one of the interests and not giving them a priority interest”). Similarly, Delaware corporations can extend bylaw amendment power to directors only if done through a provision in the articles of incorporation. \textsc{Del. Code Ann.} tit. 8, § 109 (2020).
the statute specifies a *default rule*, theoretically permitting firms to embrace self-styled regimes through private ordering. But here too, differing requirements may apply if a firm is to achieve the needed escape velocity to break away: the most tenacious types of default rules (conceptualized through the orange planet) require nothing less than a charter provision to opt out. Other default mandates are less sticky, giving way as well to contraventions in “lower level” corporate documents—such as a shareholder-enacted bylaw (yellow planet), an ordinary bylaw (purple), or a simple board resolution (green).

Even when a state law provision permits opt-outs, and even if the corporation takes the requisite steps to achieve escape velocity, another layer of complexity awaits: the corporation may still not be free to explore all parsecs of the corporate governance universe because state law often deems certain types of self-styled regimes to be off limits. The upshot of this

70 Delaware’s staggered board statute, for example, requires that any board stagger be effectuated through the charter, initial bylaw, or a shareholder-promulgated bylaw. DELE CODE ANN. tit. 8, § 141(d) (2020).

71 In this category, and in the remaining ones, the stated means for opting out is sufficient, but any “higher level” document can generally accomplish the task too. Consequently, because charters are at the top of the corporate governance pecking order, a charter provision would also be sufficient to opt out of a state mandate that allows opt-outs through a “lower level” document, such as a shareholder approved bylaw.

72 For example, Delaware permits corporations the option to provide for proxy expense reimbursement to activists through ordinary bylaw provisions. DELE CODE ANN. tit. 8, § 113(a) (2020).

73 For instance, while Delaware permits firms to include a forum selection provision in its bylaws, it prohibits a corporation to *exclude* Delaware courts from hearing “internal corporate claims.” DELE CODE ANN. tit. 8, § 115 (2020). And Maryland gives shareholders a default right to
discussion is that for many dimensions of corporate governance, the regime that ultimately applies to the firm requires understanding (a) what the state’s substantive background mandate is; (b) whether that mandate permits opting out; (c) what the lowest-level document is for executing an opt-out; (d) what the constrained choices are for the opting-out entity; and (e) whether the corporation has succeeded in opting out in a manner that complies with (a) through (d). In short, it is logical, but it’s also complicated.

So how does the firm-level data GIM relied on fare in this more complicated environment? Unfortunately, we simply do not know at first blush. Even as compared to LLSV’s index, the IRRC data used by GIM are surprisingly opaque and poorly documented. Little remains (if it ever existed) about what went into it. In fact, the dataset appears to have had no detailed manual, but it instead refers interlocutors to the appendix of the GIM paper,74 a curious move since that appendix only cursorily describes the variable definitions, with little mention of data gathering and quality control measures.75 And, as detailed above, there does not appear to have been any researcher with the time and resources to interrogate the firm-level IRRC data used by GIM.76

Consequently, today’s researchers have scant information about how the IRRC constructed their labels.77 We know little about what documents they consulted—state law, charters, bylaws, or something else entirely. There is no information about how coders resolved inconsistencies between the documents, if they considered multiple documents at all. There is no indication about the credentials of the coders themselves, or measures to ensure inter-coder consistency. And there is only a small amount of information about the nuances of state laws.78 For example, when the coders noted that a state law existed on a particular topic, did they assess whether the state law immutably required something of corporations? Or was the state law?

75 Gompers et al., supra note 6, at 145-50.
76 The original companion manuals to the data set are surprisingly hard to find. We searched in every law library in the United States and mobilized the combined forces of our respective institutional librarians, including contacts at law firms. After weeks of searching, we managed to find a few examples, whose methodology descriptions were frustratingly opaque. See infra note 77.
77 Although an annual IRRC publication described the various label categories, it does not touch on the methodology of data collection or the training/expertise of the labelers themselves. See, e.g., VIRGINIA K. ROSENBAUM, CORPORATE TAKEOVER DEFENSES 1998, at ix (1998) (devoting all of three short sentences to data collection protocols).
78 See infra Appendix B notes 219–220 and accompanying text.
law a default that allowed corporations to opt out? Or was the state law silent, and allowed corporations to opt-in?

The IRRC data’s issues are compounded further by a rotisserie of corporate ownership changes: in 2005, IRRC was acquired by ISS.79 And two years later, RiskMetrics acquired ISS, changing data gathering protocols and retiring the IRRC data into “Legacy” status.80 The contemporary ISS dataset has improved documentation, but it is still slim, and in any event it covers only a loosely overlapping set of variables with IRRC’s, excluding critical ingredients in the G-Index. As a result, it is now impossible to extend G-Index data computations beyond 2006.81 For those interested in slicing and dicing the G-Index, then, they must largely do so inside a time capsule from the 1990s and early 2000s.

Nevertheless, the robust demand for governance studies has induced legions of contemporary scholars to return to the original wellspring of the IRRC (and the associated G-Index) to study governance, assuming those data to be accurate and hoping to say something generalizable to contemporary settings. Top finance journals continue to publish research that is based on those early data.82 One notable contribution83 even extended the IRRC data and G-Index going backwards in time (from 1978–1989) using a subsample of companies, but in doing so it also largely presumed the integrity of the IRRC database itself. And while the moving tectonic plates of empirical corporate governance literature are increasingly exposing concerns regarding methodological designs,84 data integrity85 and

81 For example, the ISS data set no longer tracks board or officer exculpation provisions (in either charters or bylaws), which is one of the ingredients of the G-Index. See generally id.
82 See, e.g., Karpoff et al., supra note 11, at 2361-62 (employing an instrumental variables strategy on the G-Index in an attempt to tease out causal inference). When a variable being instrumented for is subject to measurement error, however, it can generate spurious results. See, e.g., Dan A. Black, Mark C. Berger & Frank A. Scott, Bounding Parameter Estimates with Nonclassical Measurement Error, 95 J. AM. STAT. ASS’N 739, 739 (2000).
83 See Cremers & Ferrell, supra note 10. We discuss this important paper in the context of our project at greater length infra note 116.
84 See Yair Listokin, Interpreting Empirical Estimates of the Effect of Corporate Governance, 10 AM. L. & ECON. REV. 90, 90 (2008) (noting that existing studies ignore the possibility of disparate treatment effects across different companies, and also fail to address endogeneity issues).
85 See Emiliano M. Catan, The Insignificance of Clear-Day Poison Pills, 48 J. LEGAL STUD. 1, 1 (2009) (noting the need to use hand-collected data, and finding that past studies that concluded that the adoption of pills was indicative of bad governance were based on findings of spurious correlation); Emiliano M. Catan & Marcel Kahan, The Law and Finance of Antitakeover Statutes, 68
empirical design, the IRRC and the G-Index have largely remained uninterrogated. Although there are a few alternatives to the IRRC index, those that exist are problematic too. The contemporary ISS dataset offers a variety of governance metrics, but it does not offer enough of them to replicate well-known indices, and its protocols appear somewhat different from IRRC’s even for the same variables it traces. It, too, has relatively poor documentation, and seems potentially vulnerable to similar coding errors. Another popular data provider, Factset, tracks even fewer governance metrics than ISS, and it is difficult to obtain data for historical years. And another, Compact Disclosure, is poorly organized for this particular task, and it ceased all updates in 2006.

Without cataloguing the remaining (modest) list of other governance datasets, none of them can be easily quality checked without access to the underlying documents from which they are purportedly built. And yet, none of these sources (that we are aware of) allows users to access the texts on which their data labels are based. To audit accuracy, then, one must recover these documents independently, read them for legal import, and confirm whether the assigned label is correct.

And this is where the challenge really begins. Even if one possessed the skills (and resources and patience) to weed through mountains of raw governance documents for substantive content, simply gaining access to an organized corpus of them is surprisingly hard. In theory, of course, lots of corporate governance documents are in the public domain, and state and federal governments have the means to provide organized access to them. Moreover, statutes and case law are but a quick internet search away. Harvesting this information should not be all that difficult, should it?

Yet, irritatingly, it is. This article focuses on what would seem to be the easiest of targets—articles of incorporation (also known as charters), a

STAN. L. REV. 629, 639 (2016) (noting that finance studies in the past have failed to omit control variables, have used improper specifications, contained data errors, and often selected data in a biased manner).

86 See Robert Bartlett & Frank Partnoy, The Misuse of Tobin’s q, 73 VAND. L. REV. 353, 353-54 (2020) (noting that the use of Tobin’s q itself indicates poor empirical design because Tobin’s q is numerically flawed).

87 See ISS, supra note 80.

88 In Online Appendix C, we show that the contemporary ISS governance data also appear to be hampered by significant errors as judged by our newly compiled data (though not as severe as IRRC’s).

corporation’s first and most important corporate governance document. The charter is critical, for it is both a corporation’s birth certificate and its constitution: to form a corporation in any U.S. jurisdiction, an incorporator must first file a charter (including within it a host of necessary ingredients) with a state secretary of state, who in turn maintains repositories of such documents. And for publicly traded companies, charters also must be filed with the SEC. In theory, then, public company charters should be readily available from both state and federal sources. In practice, however, extracting the text of contemporary charters on a wide-scale basis is tricky, expensive, and time consuming.

Consider what might be the most obvious strategy: approach relevant state governments to gain access to their primary documents. Good luck: Delaware, where the majority of public companies are incorporated, makes it risibly difficult to obtain corporate charters in native form. By way of example, consider the task of assembling the chartering history of Google’s parent company, Alphabet Inc. Although it is a Delaware-incorporated entity, searching on the Delaware Secretary of State’s website yielded no results: the entity search function returns only the first fifty hits matching “Alphabet,” and Alphabet Inc. was not among them. But even if Alphabet Inc. had been among the first fifty, obtaining information about whether the entity is active requires one to pay a $10 fee. To obtain an inventory of all documents filed in the state by that entity would cost an additional $175 for each registrant.

91 Although corporations often have numerous governance documents, the most important one is the charter. In addition to charters and bylaws, corporations generally have additional governance documents, such as committee charters, corporate governance guidelines, and a variety of other documents that corporations adopt to meet stock exchange, regulatory, and other requirements. See generally Sarah C. Haan, Shareholder Proposal Settlements and the Private Ordering of Public Elections, 126 YALE L.J. 262 (2016) (showing that many corporate disclosures about campaign finance are made as the result of negotiated private settlements with shareholders); Yaron Nili & Cathy Hwang, Shadow Governance, 108 CALIF. L. REV. 1097, 1107-08 (2020) (noting the importance of charters and bylaws, and how shareholders and management both vie to exert influence and restrict the other’s influence and control).

94 See generally 15 U.S.C. § 78m (indicating that charters should be available from federal sources).

95 About the Division of Corporations, DEL. DIV. OF CORPS., https://corp.delaware.gov/aboutagency [https://perma.cc/9QXE-6DTF] (noting that more than 66% of the Fortune 500 are incorporated in Delaware).

97 See Accessing Corporate Information, DEL. DIV. OF CORPS., https://corp.delaware.gov/directweb [https://perma.cc/3FW3-4WVS] (describing the process of requesting documents). While at first blush there appears to be a cheaper $20 option to access a list of filed documents, that list only shows the last five documents filed. (To discover this informational nugget, a research assistant spent twenty minutes on the phone with the Delaware Secretary of State’s office.)
All this, of course, still falls short of producing the raw texts themselves. For that, one would additionally have to make a formal document request for each individual entity with the Delaware Department of State, incurring a per-document fee of $10 for the first page plus $2 for each additional page. After some period of days or weeks, a hard-copy packet would arrive in the mail, whereupon the researcher would need to use character recognition technology to scan and digitize its contents. The costs quickly add up: there are 1,568 Delaware-incorporated issuers in our corpus, comprising about 60% of the total number we track across all U.S. states. Delaware entities have a mean chartering history of 3.47 documents per issuer, and an average length of 11.46 pages per document. All told, if one wholly disregards labor costs, and further assumes no expediting costs ($1,000 per document for same-day service), we estimate that the Delaware Department of State would charge no less than $442,645 simply to replicate three-fifths of the textual corpus we unveil (free of charge) in this article.

Similar attempts to obtain primary documents from New York, California, Nevada, and Massachusetts fared little better: in each state, we grappled with decades-old computer systems, spent hours on the phone, and were offered seemingly random collections of charter documents to be dribbled out over the course of days or weeks, usually for hundreds of dollars. In any realistic sense, then, seeking out governance documents from state repositories is a non-starter.

98 For the current fee schedule, see Del. Dep’t of State, Division of Corporations Fee Schedule (2020), https://corpfiles.delaware.gov/Augustfee2020.pdf [https://perma.cc/YJJ5-Z3WM]. Although Delaware evidently maintains the entire collection in digital form, the cumbersome process described in the text appears non-negotiable, even for pure researchers. Early in this project and armed with the written endorsement of Hon. Leo Strine (the then-sitting Chief Justice of the Delaware Supreme Court), we approached Delaware’s Deputy Secretary of State and Director of Division of Corporations requesting access to the state’s corpus (on a confidential basis). Our attempt was quickly rebuffed. See E-mail from Kristopher Knight, Deputy Sec’y of State, Del. Dept’t of State, to Eric Talley (Aug. 31, 2017) (on file with authors) (“I appreciate the offer, but the Division has a long-standing practice of not participating in such arrangements.”).

99 Alternatively, one could take a quick sojourn to Dover, Delaware—about an hour’s drive south of Interstate 95, and coincidentally abutting the scenic Bombay Hook National Wildlife Refuge—where one could then enjoy the privilege of queuing up for one of the state-issue public terminals to access and print documents (for one hour at a time as we understand, if other users are waiting).

100 This figure is based on a mean word count of 4,219 at an average of 368 words per page. See infra Part II for a more fulsome analysis of these measures.

101 See Del. Dep’t of State, supra note 98.

102 This figure ignores the $10 fee to gauge whether the firm is active, but includes the Long Form certificate of filings, resulting in a total cost computed by [2175 + $10 (3.47) + 2 (3.47) (11.46 - 1)] x 1568.

103 We were unable to determine how much revenue the Delaware Secretary of State’s office generates in charging for access to these ostensibly public documents. Consequently, we cannot estimate how our efforts to make a sizable corpus of them freely available to the public may cut into these revenue margins.
Those interested in publicly traded companies have two other possible avenues. First, many companies’ investor relations websites contain charters. Their digital format is far from uniform, however, and they typically contain only current (but not historical) versions, frustrating researchers who wish to study governance both cross-sectionally and over time. Consequently, such sources have limited value.

The other option (and the one we ultimately pursued here) is to go to the SEC, which maintains a repository of current and historical filings that users can access for free—depending on how one defines free. To be sure, public companies are required to file up-to-date charters with the SEC, and the Commission duly records all public filings since its Electronic Data Gathering, Analysis, and Retrieval system (EDGAR) went live in 1995. That said, EDGAR proves to be a cumbersome hunting ground for governance documents. The interface is notoriously hard to filter and search, and locating charters is particularly challenging. Although components of EDGAR filings have become predictable and regularized over the years, corporate charters and bylaws have not, and their disclosed content is often squirreled away in odd and irregular places. And, because EDGAR only has filings from the mid-1990s, locating pre-1990s materials requires submitting a records request to the SEC—an exercise that, reminiscent of state regulators, requires Byzantine paperwork, a twenty-day processing period, and an hourly processing fee for the lucky employee charged with hunting down the documents.

105 Several practitioners have even authored how-to articles on EDGAR use. See, e.g., Duff McDonald, Unscrambling EDGAR: The SEC’s Stock Database Is Torture to Use. But Help Is Out There, MONEY, June 1999, at 175.

106 In theory, issuers are supposed to tag their charters as “Exhibit 3” in the context of periodic filings (10-K, 10-Q) and current reports (8-K). See 17 C.F.R. § 229.601 (2021). But in practice, these tags are applied with varying degrees of consistency. For example, Biglari Holdings Inc.’s 2018 S-4 registration statement contains the text of its charter in a section labeled “Annex II,” NBHSA Inc., Registration Statement (Form S-4) Annex II (Dec. 22, 2017), while Parkway Property Inc.’s 1996 charter is in “Exhibit B” to the companies’ preliminary proxy statement. Parkway Co, Preliminary Proxy Statement (Form PRE 14A) Exhibit B (May 3, 1996). These tagging inconsistencies appear also to frustrate the search algorithms of commercial services. See John Gerdes Jr., EDGAR-Analyzer: Automating the Analysis of Corporate Data Contained in the SEC’s EDGAR Database, 35 DECISION SUPPORT SYS. 7, 8 (2003) (describing SGML tags and identifying challenges posed by improper tagging).

A related strategy for the exhausted researcher might be to leverage commercial search platforms, such as Westlaw, LexisNexis, and Bloomberg, which also track EDGAR filings but purport to offer user-friendly search conduits. Our research suggests that Westlaw is perhaps the most comprehensive for a project like ours, allowing researchers to search for “articles of incorporation/bylaws” for individual companies. However, after comparing our manually collected corpus to Westlaw, it appears that Westlaw compiles its data in a way that succumbs to the EDGAR filing irregularities described above. Consequently, extracting a firm’s chartering history on Westlaw frequently results in troubling gaps in coverage. Holding that issue aside, Westlaw’s search results often require extensive post-processing by researchers seeking to build a usable panel of chartering histories. Westlaw does provide researchers with unfiltered lists of up to 10,000 documents that may contain charters (interlaced with bylaws and many other texts). While potentially useful, these lists usually contain duplicates and are ordered by filing date (which can be years or even decades after their effective dates).

Even if one is lucky enough to locate comprehensive chartering histories from a commercial provider like Westlaw, she will likely be prohibited from using them for a project of any scale. Users can download no more than 100 text documents at once. With a combination of patience, ingenuity, and web-scraping technology, one might be able to work around some of these technical speed bumps, but doing so would almost certainly violate Westlaw’s user agreement, subjecting the user to a lock on her account. Posting the results publicly might also trigger the litigious wrath with which the company enforces its user agreements. If one hopes to access and share the full textual chartering histories for thousands of public companies, then, commercial data providers offer little refuge.

109 Evidently, Westlaw (like other commercial providers) focuses exclusively on EDGAR filings located under the “Exhibit 3” heading—the exhibit category supposedly designated for charters and by-laws. In practice, as noted above, many companies disregard this heading mandate, squirrelling away their governance documents under different exhibit numbers (or none at all).

110 For example, Phase Forward Inc. adopted a new charter in the context of its IPO in July 2004. Different versions of this document can be found in four different filings from around the time of the IPO, and all filings are represented as separate entries in Westlaw’s search results.

112 See, e.g., Lancaster, supra note 23 (documenting the case of a legal-tech startup that was driven from business from a lawsuit filed by Westlaw’s parent company).

113 Our investigation of Westlaw’s main competitors revealed nearly identical terms of use prohibitions, but with inferior search functionality. Lexis, for example, seems to require users to search for specific terms or companies, which curtails the ability to even pull up all NASDAQ companies at once.
II. RECLAIMING CORPORATE GOVERNANCE

Given the paucity of existing data and the shortcomings in strategies for gathering the data from scratch, researchers enjoy few attractive options, and they are usually left to muddle through in an ad hoc way while adjusting priorities and limiting their research designs.

This article endeavors to sweep away these obstacles, reclaiming the textual DNA of corporate governance for all researchers in the process. In this Part, we begin by unveiling the results of this multi-year enterprise: the CCG, which involved harvesting by hand thousands of corporate charters spanning the better part of three decades, cleaning them, labeling them, and making the resulting corpus an open-source public good (as it always should have been). We then spotlight several immediate payoffs of this effort, ranging from intriguing descriptive accounts of the corpus, to reassessing heretofore accepted wisdoms in law and finance, to marshaling the emergent tools of machine learning and computational text analysis to unpack the myriad stories that these critical documents tell.

A. Charter Texts

Over the course of several years, we have been assembling a comprehensive textual dataset containing present and historical charters of almost 3,000 of the largest publicly traded companies in the United States. Our dataset is based exclusively on digitized filings with the SEC made available on the EDGAR database, therefore ensuring our ability to share it as an open-source resource.

To ensure accuracy and comprehensive coverage, we harvest charters manually, with the help of a small army of research assistants. Doing so allows us to avoid the many pitfalls of the automated approaches evidently used by commercial services. We use a formal organizational hierarchy and numerous quality control measures to exercise quality control over our collection efforts. Senior members of the team (law school graduates and advanced JD candidates) cross-checked most information assembled by junior research assistants.114

The resulting dataset contains the chartering histories for 2,715 companies, starting with the first fully restated charter the company uploaded

114 More details on our data gathering protocols can be found in Appendix B. Although we consider our collection protocol to be a significant improvement over standard commercial providers, the biggest advantage of our dataset is its open-source nature. We make the dataset available to the public, and we invite others to contribute to it and correct any mistakes that escaped our quality control measures. We return to this point below in Part IV.
onto EDGAR.115 For many companies, this is the first full charter that was filed after EDGAR went live in 1995. For a majority of companies (around 57\%), however, we are able to trace their charter history well back into the 1990s.116 In some cases (approximately 11\%), we successfully extract a chartering history to a year prior to 1990. Based on this harvested information, we construct a textual corpus that treats an issuer’s charter document in a given measuring year as the observational unit. In other words, our dataset has a “panel” structure, observing the charter text(s) that governed the internal affairs of each active company as of January 1 of each year between 1990 and 2019.117

Even without elaborate data crunching, our corpus renders some interesting insights about public company charters over time. Consider charter length. In principle, certificates of incorporation could be quite short, with most of the nitty-gritty baked into other governance documents (such as bylaws).118 Indeed, most state statutes require charters to have only a few informational ingredients,119 and they can be shorter than seventy-five

115 For approximately 200 companies in the corpus, we were unable to locate at least one fully restated charter. Therefore, these companies are not included in the analyses presented here and in Part III below.

116 A notable paper started down a route similar to ours, but ultimately chose a different path for a different purpose. See Cremers & Ferrell, supra note 10. There, the authors tracked approximately 1,000 companies from the IRRC data set backwards in time to the 1978–89 era. The authors did not attempt to audit the G-Index itself over the IRRC years, but instead used a random sample of IRRC observations from 1990 in order to emulate the labeling conventions of the IRRC. Id. at 1172-73. They do not report on error rates they discovered in the IRRC, nor do they attempt to assess whether the IRRC’s conventions were consistent with objective legal judgments. Unlike this paper, the authors did not collect the raw corpus of governance documents, but instead focused on generating labels only. (Neither their labels nor their constructed index is available to the public, though they evidently have made their constructed index available to select researchers.)

117 Although we relegate most of our data collection protocols to Appendix B, one detail warrants attention here. When a typical issuer amends its charter, its disclosure frequently takes the form of a focused statement of the amendment, unaccompanied by a de novo restatement of the entire amended charter. In fact, several such piecemeal disclosures will often stack up before an issuer wrangles them into a full restatement. Manually interlacing such amendments into the pre-existing charters proved infeasible. Instead, we aggregated full restatements and partial amendments as follows: for each issuer in any year, we consider its charter to consist of (a) the most recently disclosed full charter, appended by (b) all disclosed partial amendments executed after the restatement in (a) but before the observation year. This protocol preserves information, but also may lead to some distortions (such as the measured length of a charter). Therefore, where appropriate (such as in Figure 2 below), we limit attention to only the most recent full restatement (suppressing any intervening partial amendments).

118 See generally Nili & Hwang, supra note 91.

119 Typically, they require (a) the name of corporation; (b) its purpose or nature of its business; (c) its official address; (d) a description of corporation’s capital structure; and (e) duration of corporation’s existence. Some statutes require descriptions of the incorporators, paid-in capital, and initial board structure. See 1 MARVIN HYMAN & PUBLISHER’S EDITORIAL STAFF, CORPORATION FORMS § 2:2, Westlaw (database updated June 2021).
Public company charters are typically longer, but are still relatively brief. In practice, however, the (full versions of) charters of publicly traded companies are far longer, typically ranging between 1,000 and 12,000 words.

Figure 2: Mean Word Length (Full Charter Restatements)

Figure 2 depicts how the average length of charters in our corpus has changed over time, with Delaware-incorporated issuers in black and non-Delaware companies in gray. Interestingly, the mean charter length for firms incorporated in Delaware has held relatively steady since the mid-1990s, while that of the average non-Delaware charter has grown precipitously. In the early 1990s, a typical non-Delaware charter was 20% shorter than that of a typical Delaware-based corporation. Over the last three decades, this gap has not only closed but even been reversed.121

120 See, e.g., J. ROBERT BROWN, JR. & HERBERT B. MAX, Form 1.01: Articles of Incorporation (Legal Minimum), in RAISING CAPITAL: PRIVATE PLACEMENT FORMS & TECHNIQUES 1-17, 1-17 (3d ed. 1995).

121 In Figure 2, we report the mean based on the length of all full charters in the dataset for active companies at a given point in time. This implies that the sample of companies (both in Delaware and elsewhere) changes over time. However, the results reported above remain substantially similar when we restrict the sample to companies that appear in the full panel of the dataset.
Figure 3: Mean Flesch-Kincaid Readability Scores (Full Restatements)

Another constructive measure of our charters corpus explores their overall readability. To what extent can a layperson read and understand the content of this foundational governance document? To get a handle on this question, we assessed our corpus of charters against the well-known Flesch-Kincaid (F-K) scale.122 Originally developed by the U.S. military to assess the content of mechanical instructional manuals, F-K scores are calculated on the basis of the average length of words and sentences in a document. The score proxies proportionally to readability, so that the higher the score of a document, the easier it is to read. F-K scores below a score of 10.0 are considered to be the most challenging, appropriate to a professional trained in the field. (Obvious candidate groups here might be lawyers, board members, and executives.)123

For the most part, as Figure 3 suggests, the charters in our corpus are not breezy page-turners. In fact, corporate charters in Delaware in particular have always been within the hardest tranche of the F-K scale. Perhaps more interesting is the fact that much like with length, non-Delaware charters in

123 For more detail on the F-K scores, see Online Appendix C.
our dataset have been closing the readability gap, too. One potential explanation is more heavy “lawyering” of public company governance documents during the 1990s and early 2000s—a time period coinciding precisely with the rise of quantitative governance research and enhanced shareholder activism.

Although we will circle back to explore several of these (and other) textual attributes of our corpus later in this article, it warrants noting that this is the first time (to our knowledge) metrics like these have even been possible on a widespread panel of corporate charters. That observation alone underscores the great potential of the CCG as a tool to unlock empirical governance along untold dimensions.

B. Data Labels

Notwithstanding the several interesting acontextual measures of our corpus, significant additional work is required to distill the substantive legal content from the textual contents of documents (a process that is often referred to as “labeling” the corpus). Here, there is no substitute for reading the documents and deploying lawyerly judgment (an exercise that lawyers do quite well). Thus, in a parallel effort to the harvesting and cleaning of the raw charter corpus, we also develop two related labeled datasets. The first (and most painstaking to produce) involves manually labeling the content of the harvested charters along several dimensions. We developed a detailed common rubric that requires a variety of quantitative and textual inputs. The first few of these inputs relate to document “meta-data” (such as execution date, company identifiers, state of incorporation, and whether the document was a full restatement or a partial amendment). The remaining pertain to substantive governance choices as reflected in the text of the charter. Our rubric requires the coder to read, identify, label, and extract relevant language from the charter pertaining to 28 governance provisions in each chartering

124 Nili and Hwang, for instance, used this technique to analyze audit committee charters. See Nili & Hwang, supra note 91, at 1110.

125 The term “labeled” refers to using human judgment to rank, classify, or assess the content of a text (or portion thereof). See, e.g., Shuzi Niu, Jiafeng Guo, Yanyan Lan & Xueqi Cheng, Top-k Learning to Rank: Labeling, Ranking and Evaluation, in SIGIR ’12: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL 751, 751–52 (2012). Nearly all existing corporate governance databases are themselves labeled databases. The CCG, in contrast, includes both unlabeled content (the raw corpus) and labeled content (described herein).

126 We take some care to elucidate these steps here for the sake of future researchers who will use this database, and in light of the relatively opaque documentation that attends other corporate governance datasets. See supra Part 1.
We took great care in both designing uniform labeling protocols and training our research team. We double- and triple-assigned identical labeling tasks to our less-experienced coders to detect and redress labeling inconsistencies. Senior members of the team also acted as supervisors to adjudicate differences in coding styles and to flag challenging issues with the entire team in weekly progress meetings.

Second, we supplement the firm-level observations with a state-level labeled dataset tracking sixteen statutory governance rules across all fifty states (and the District of Columbia) from 1990 to 2019. Here, the then-prevailing statutory mandates are labeled not only for their substantive content, but also whether companies are permitted to opt out of the statute, what sort of measures are required to effectuate an opt-out, and whether companies opting out are required to choose from a constrained set of options. In all cases, state law provisions were labeled by either the authors or advanced law students under the direct supervision of the authors.

When combined with the textual corpus, the associated labeled datasets allow us to track dozens of governance characteristics, across companies and over time. Although space constraints prevent us from highlighting every single facet here, we highlight a few interesting trends in the four panels of Figure 4. Each panel of the figure tracks the extent to which charters in our corpus reflect one of four different types of governance provisions: (i) multiple classes of common stock; (ii) staggered boards; (iii) prohibitions on shareholder action by written consent; and (iv) prohibitions on special meetings. In the latter three categories, we also track the substantive background content of the relevant state law provision(s) for each issuer (based on the substantive content of the then-prevailing statute for the state of incorporation). The interaction between state law and our charter coding is important, since state law may provide these governance provisions even if they are not specifically elected in the charter.

127 Many of these pieces of information later made it possible to match our documents to issuer information from external datasets, as demonstrated below. A description of our labeling protocol is included in Appendix B.
128 We used a formal organizational hierarchy similar to the one employed for charter harvesting. See infra Appendix B.
129 Id.
130 See supra Figure 1 and related text.
Consider first multi-class (or dual-class) common stock provisions. These provisions allow founders to maintain control of their companies even after their equity stake is diluted and are a hot topic of debate among investors and governance experts.\footnote{131}{Although three of the panels in the Figure reflect the substantive state background rule, statutory heterogeneity precludes illustrating other dimensions of the background rule, such as whether it is a default or immutable rule, what type of document (if any) is required to opt out, and what a company’s opt-out choices are. These considerations, however, will come into play in the next subsection, when we use our database to assess (and correct) the contents of existing governance datasets, such as the IRRC.} Charters are required to spell out the capital structure of the corporation, and the provision for multiple classes of common stock is easily tracked. Issuers with multi-class common stock oscillate somewhat over

our sampling period, rising continuously to a peak at just under 16% in 2001 and generally declining thereafter. Although not pictured here, it also bears noting that when multiple classes of common stock are authorized in the charter within our sample, it is overwhelmingly likely that they will not carry equal voting rights and privileges on a per-share basis across the board. Around 78% of the issuers with multi-class common stock in our sample each year articulate unequal per-share voting rights, a ratio that remains roughly constant over time.

Moving to the second panel, consider staggered board composition—a structure that typically designates three overlapping classes of directors whose terms interlace (much like the U.S. Senate), so that only one third of the directors are up for reelection in any given year. Staggered boards are typically considered to be a key way to delay or deter a hostile takeover or proxy contest.133 Express provisions in the charter that stagger the board are common in our data, and we find them in around 45% of our charters overall. That said, the frequency of charter-authorized board staggering provisions has declined discernibly over the last several years, and by 2019 they were a clear minority (around 39%). This trend is no doubt due to the significant pressure that proxy advisers and other shareholder watchdogs have placed on board staggering provisions in recent years.134 Additionally, the background law of four states require (or at some point required) staggering of public companies,135 and about 3% of our firms (in an average year) are incorporated in such states.

A topic of growing importance in contemporary governance debates is the extent to which shareholders enjoy significant latitude to engage (or be engaged) in activism, via written consent rights or the ability to call special meetings.136 Each of these rights substantially tips the balance of power and control away from the board and towards the hands of shareholders. Such governance devices are reflected in the third and fourth panels of the Figure. With respect to written consent rights, our charters manifest a growing proclivity to either prohibit such actions outright or to effectively do so by imposing a requirement that all shareholders entitled to vote must act unanimously via written consent (a functional impossibility for public

133 See Gompers et al., supra note 6, at 146-47.
135 IOWA CODE § 490.806A (2021); IND. CODE § 23-1-33-6(c) (2021); MASS. GEN. LAWS ch. 156B, § 39a, ch. 156D, § 8.06(b)-(g) (2020); OKLA. STAT. tit. 18, § 1077(D)(2) (repealed 2013).
companies). The bottom left panel lumps these two effective prohibitions together, and it shows that effective prohibitions on written consents are expressly provided for in about 16% of our charters overall. That fraction, however, has been growing dramatically, from next to nothing at the beginning of our sample to fully a third of issuers by the end. In addition, about a third of the issuers in our sample are subject to state laws that effectively prohibit written consent actions (all by imposing a unanimity requirement).137

Now consider provisions that prohibit shareholders from forcing the convening of special meetings. Here we once again see a clear increasing trend toward express prohibition through charter provisions over time, growing from near zero to around one-fifth of the charters by the end of our sample period. However, in those cases explicitly granting shareholders a right to convene a special meeting, the mean triggering percentage is around 33% on average (and has been falling since the 1990s). In addition, the state law of several states does not grant shareholders the right by default to convene special meetings, and such statutes affected about 70% of our firms (a number that includes Delaware corporations—at nearly three-fifths of our sample).138

It is important to keep in mind that the interplay between state law and private ordering can sometimes be subtle in ways not fully captured in Figure 4. As we noted earlier, corporate governance documents can (and frequently do) attempt to opt out of the background state rule, which can (and frequently does) give way if the opt-out is executed appropriately. It is critical to keep track of all of these factors in assessing whether a particular governance device

137 ALA. CODE § 10A-2A-7.04 (2020); ALASKA STAT. § 10.66.423 (2021); ARIZ. REV. STAT. ANN. § 10-704 (2019); ARK. CODE ANN. § 4-26-710 (2021); CAL. CORP. CODE § 603 (2021); COLO. REV. STAT. § 7-107-104 (2021); CONN. GEN. STAT. § 33-698 (2021); D.C. CODE § 29-305.04 (2021); FLA. STAT. § 607.0704 (2020); GA. CODE ANN. § 14-2-704 (2021); HAW. REV. STAT. § 414-124 (2020); IDAHO CODE § 30-29-704 (2021); IND. CODE § 23.1-29-4 (2021); KY. REV. STAT. ANN. § 271B.7-040 (West 2017); LA. STAT. ANN. § 12:1-704 (2021); ME. STAT. tit. 13-C, § 704 (2020); MD. CODE ANN., Corps. & Ass'ns § 2-205 (LexisNexis 2021); MASS. GEN. LAWS ch. 156D, § 7.04 (2020); MICHI. COMP. LAWS § 450.1407 (2021); MINN. STAT. § 302A.441 (2020); MISS. CODE ANN. § 79-4-7.04 (2021); MO. REV. STAT. § 351.273 (2021); MONT. CODE ANN. § 35-14-704 (2019); NEB. REV. STAT. § 21-256 (2020); N.H. REV. STAT. ANN. § 293-A:7.04 (2021); N.J. STAT. ANN. § 14A:5-6 (West 2021); N.M. STAT. ANN. § 53-18-8 (2021); N.Y. BUS. CORP. LAW § 615 (McKinney 2020); N.C. GEN. STAT. § 55-7-04 (2021); N.D. CENT. CODE § 10-19.1-75 (2021); OHIO REV. CODE ANN. § 1701.54 (LexisNexis 2021); OR. REV. STAT. § 60.211 (2019); PA. CONS. STAT. § 2324 (2021); R.I. GEN. LAWS § 7-1-707 (2021); S.C. CODE ANN. § 33-7-104 (2021); S.D. CODIFIED LAWS § 47-1A-704 (2021); TENN. CODE ANN. § 48-17-104 (2020); TEX. BUS. ORGS. CODE ANN. § 6.201-202 (West 2021); UTAH CODE ANN. § 16-104-704 (LexisNexis 2021); VT. STAT. ANN. tit. 17A, § 7.04 (2021); VA. CODE ANN. § 13.1-657 (2021); WASH. REV. CODE § 23B.07.040 (2020); W. VA. CODE § 31D-7-704 (2021); WIS. STAT. § 186.0704 (2021); WYO. STAT. ANN. § 17-16-704 (2020).

138 ALA. CODE § 10A-2A-7.02 (2020); DEL. CODE ANN. tit. 8, § 211 (2020); IND. CODE § 23-1-29-2 (2021); KAN. STAT. ANN. § 17-601 (2019); MO. REV. STAT. § 351.225 (2021); N.Y. BUS. CORP. LAW § 602 (McKinney 2020); N.C. GEN. STAT. § 55-7-02 (2021); OKLA. STAT. tit. 18, § 1056 (2021); OR. REV. STAT. § 60.204 (2019); PA. CONS. STAT. § 2521 (2021); R.I. GEN. LAWS § 7-1.2-701 (2021); S.C. CODE ANN. § 33-7-102 (2021); VA. CODE ANN. § 13.1-655 (2021).
is present (or absent) in a company in any given observation year. For example, state law affects whether board staggering is already the presumptive rule in the jurisdiction. And state law similarly dictates whether opting out is possible, and if so, whether opting out must be done via the charter, or instead could be done in a lower-level document (shareholder approved bylaws, ordinary bylaws, board resolutions, and the like). And for those companies that opt out, state law may further constrain the number of overlapping classes of directors that are permitted when a firm opts out (often a maximum of three). The panels of Figure 4 account for only charter contents and background state rule as self-contained matters, with none of the additional interplay. In later sections, however, we take pains to carry through this interplay when we compare the CCG database to other existing corporate governance data.

C. Reassessing What We Know (or Thought We Knew) about Corporate Governance

The CCG database—including both the raw corpus and the labeled datasets—gives us a powerful set of new tools to analyze governance characteristics at the firm level. This ability, in turn, also makes it possible to tabulate side-by-side comparisons of the CCG database with other oft-used governance metrics. One that merits particular attention—and the most renowned source of firm-level corporate governance metrics in the law and finance literature—is the “ISS Legacy” (aka IRRC) database, discussed at length in Section I.B.139 In the pages that follow, we set about comparing the CCG database to the individual items in the IRRC, in order to assess their accuracy. At the risk of issuing an academic spoiler alert, the results of this exercise reveal that our worst fears about data integrity have come to pass: as explained below, we uncover an alarming pattern of miscodes in numerous of the governance dimensions that comprise the G-Index (and its variations). The errors are so widespread, in fact, that even under a conservative error-detection protocol, we estimate that the G-Index is coded incorrectly more than 80% of the time.

But before going there, it is instructive first to illustrate with a specific example how we assess and classify potential errors: director exculpation provisions, one of the 24 variables included in the G-Index. Lawyers, professors, and corporate law students know these provisions well. In all states that permit or imply them (and by 2003 all did), an exculpation provision shields directors (and in some cases officers) from monetary liability for breaching their fiduciary duty of care. Such statutes do not

139 See supra notes 74–85 and accompanying text.
typically deny injunctive relief, nor do they permit exculpation for conduct that (among other things) would be disloyal, would lack good faith, or would constitute corporate waste. There is nonetheless some substantive variation among states’ mandates. For example, in five states, the statutory rule exculpates directors automatically without needing an implementing charter provision. And two of those states go even further, making director exculpation immutable. Among the states where exculpation remains a default rule (in either direction), some permit firms to opt out of the rule via one or more governance documents that sit at a “lower” echelon than the charter (such as a bylaw provision).

As far as we are able to discern, the IRRC database never considered much (if any) of the statutory heterogeneity described above, ignoring (for example) whether the state’s background rule already exculpates directors, or how/whether a firm might opt out of that mandate. Instead, the IRRC seems to have limited its labeling attention to a counting exercise based on an issuer’s corporate governance documents (which we conjecture focused on corporate charters, though we do not know for sure). Our approach, in contrast, pays close attention to the interplay between statutory mandates and governance documents.

To assess the accuracy of the IRRC against our CCG database, we entertain alternative strategies for identifying mis-codes, which we define as “permissive” and “conservative” strategies. The permissive approach would

140 Delaware’s famous “102(b)(7)” statutory provision provides the most common template. DEL. CODE ANN. tit. 8, § 102(b)(7) (2020). There, as in the vast majority of other states, exculpation for a breach of duty of care is not preordained by statute, but instead may be adopted by the corporation through express exculpation provision if done via the charter. Id. West Virginia was the last to add an exculpation statute, following this same enabling template in 2002. W. VA. CODE § 31D-2-202 (2021). A minority of states have adopted exculpation statutes that differ from Delaware’s model. See, e.g., IND. CODE § 23-1-35-1 (2021) (providing an exculpation provision that also covers loyalty and good faith).

141 See FLA. STAT. § 607.0831 (2020); IND. CODE § 23-1-35-1 (2021); NEV. REV. STAT. § 78.138 (2021); OHIO REV. CODE ANN. § 1701.59 (LexisNexis 2021); WIS. STAT. § 180.0828 (2021).

143 These include Pennsylvania, 15 PA. CONS. STAT. § 513 (2021) (shareholder-promulgated bylaw); Minnesota, MINN. STAT. § 302A.111 (2020) (bylaw); Ohio, OHIO REV. CODE ANN. § 1701.59 (LexisNexis 2021) (bylaw/regulation); and Utah, UTAH CODE ANN. § 16-10a-841 (LexisNexis 2021) (bylaw and/or shareholder-promulgated resolution).

144 To put a finer point on it, a corporation’s directors may enjoy exculpation protection in one of multiple scenarios: (1) the state’s background rule already prescribes exculpation subject to an immutable rule; (2) the state’s background rule prescribes exculpation as a default rule, and the corporation has not attempted to opt out using statutorily prescribed means; or (3) the state’s statute prescribes a default rule that does not prescribe exculpation, but allows the corporation to contract out pursuant to a statutorily prescribed means and the corporation has done so. The IRRC database does not appear to have used any of these criteria, but instead uses a less-specific version of criterion (3) with no attention to the statutory background requirements. Our approach, in contrast, marshals all three steps described above.
simply ask whether there is an inconsistency between what we observe in a company’s charter and what is contained in the IRRC. Under this approach, any inconsistencies are deemed to be errors by the IRRC. The conservative approach, in contrast, identifies an inconsistency as a miscode only if it is impossible (in light of charter text and the underlying statutory framework) for the IRRC’s designation to be correct as a legal matter.

To see how these criteria work in practice, consider again the exculpation example. Suppose ABC Inc. is a Delaware corporation whose 2006 charter comprises part of our dataset. Suppose further the IRRC represents that the company exculpated directors in 2006, but our corpus does not reflect any such provision in the charter for that year. The permissive approach would immediately deem this inconsistency to be a miscode. The conservative approach would require more steps, taking account of the fact that, as of 2006: (a) Delaware law did not grant default exculpation to directors; (b) Delaware did allow opt-outs through an exculpation provision; and (c) any attempt to opt out must have been reflected in the charter to have legal effect. Applying these criteria, the conservative approach would also register an error: the lack of an express exculpation term in ABC’s 2006 charter, combined with the contours of Delaware law as of 2006, necessarily imply that the IRRC label could not possibly be correct.145

The two panels of Figure 5 compare the IRRC’s exculpation designation to the CCG dataset over time under each of these two aforementioned approaches. The left panel compares the IRRC designations for all issuers by year (bars) against all issuers of the CCG dataset (lines). The red line corresponds to the permissive approach, tracking the mean number of issuers per year that have an express exculpation provision in the company charter. The blue line tracks the conservative approach, factoring in the statutory regime of each firm’s state of incorporation as well. The right panel renders a similar comparison, but it confines attention to only the set of companies where we have a positive match between the CCG and IRRC datasets (a limitation that drops all but the observation years covered by the IRRC, scattered sporadically between 1990 and 2006).

145 Notice that our conservative error-detection protocol might reach a different outcome from the permissive one if ABC were incorporated in a different state—such as Ohio—which allows corporations to opt out through a lower “echelon” document (i.e., a bylaw provision). In this case, if the IRRC reflects exculpation but we do not observe such a provision in the charter, we cannot deem a miscode to have occurred under the conservative rubric, since it is at least possible that the firm executed its exculpation regime through a bylaw provision (which our chartering corpus and labels do not track).
Figure 5: CCG–IRRC Comparison of Director Exculpation Provisions

As one can see from the CCG trendlines—and consistent with the longstanding view of judges and practitioners—exculpation provisions have grown close to ubiquitous, and they were already on a strong growth trajectory by 1990, shortly after Delaware began by statutory change to allow them in 1986. By 2006, around 85% of all issuers (and 96% of Delaware corporations) had such provisions in their charters. In contrast, and for reasons that would likely befuddle most corporate lawyers, the IRRC data suggest a strong opposite trend, implying that only 27% of all issuers (and 32% of Delaware corporations) exculpated directors by 2006. This striking divergence is present in both the unmatched and matched subsamples, and it persists even if we ignore state law superstructures, limiting our attention to express provisions in the charter. Note further that the IRRC's miscoding problem appears to grow worse (not better) in time. Lacking a helpful description of the IRRC's labeling protocols, we can only speculate why the dataset appears so alarmingly inaccurate on exculpation. One possibility—consistent with machine learning text analysis we describe in the next Part—is that drafting protocols for charter provisions likely became more “lawyerly” and technical during much of the early 2000s—a transition that may have caused readers with limited legal training to overlook exculpation terms that featured technical language.

147 DEL. CODE ANN. tit. 8, § 102 (2020).
148 Tabulating at the company level, the IRRC misclassifies exculpation rights 53% of the time using the permissive approach and 52% of the time using the conservative approach. Note that the conservative approach yields a higher error rate (at least on this dimension), because by construction it takes into account state-level statutory provisions—which IRRC appears to ignore completely.
D. Aggregating G-Index Errors

Director exculpation provisions are but one example of seventeen individual governance characteristics on which the CCG enables us to audit the accuracy of the current version of the IRRC database (including the G-Index as contained therein). For all component variables in the IRRC that we are able to assess through charters, we conducted a similar set of comparisons to our labeled dataset (using the “conservative” error correction approach described above). The results of this comparison are captured in Table 1. To simplify, the Table reports error rates using the permissive rubric, and it defines a provision to be a “Positive” when the IRRC reflects it to be present and a “Negative” otherwise. If the IRRC coding matches our charter coding in the CCG database, we further deem the IRRC coding to be “True” and otherwise “False”. The table thus tracks “True Positive” (True Negative) designations—where our data and the IRRC agree about the presence (absence) of a provision—as well as “False Positive” (False Negative) designations, in which the IRRC indicates a provision to be present (absent) and our labeled data reveal the opposite. The table then lays out correct classification rates, error rates, and F1 scores (a conventional way to assess classification accuracy balancing false positives and false negatives).

Because of lack of documentation on definitions in the IRRC data, the Table defines certain features according to multiple criteria. We found that blank check preferred stock could fall into one of several categories. We also found that supermajority charter amendment provisions could be construed narrowly (only if they pertain to the entire charter) or broadly (also if they pertain to the whole charter or enumerated portions of the charter). Note from the table that while some of the metrics are relatively sound, others are particularly problematic. Averaging across all listed dimensions, our data suggest that the IRRC data err at least 20% of the time.

149 The F1 designates the harmonic mean between “precision” (the fraction of true positives to all classified positives) and “recall” (the fraction of true positives to all actual positives). The score is bounded between 0 and 1, with higher scores suggesting a more accurate classification. F1 is a commonly used metric in text analysis and binary classification. For additional discussion of F1 scores, see Posen et al., supra note 16, at 33.
These all seem like relatively large overall error rates. What does it imply for the G-Index, which amalgamates all of them? As discussed earlier, the G-Index has become easily the most prominent corporate governance index in the literature, spawning a litany of variations. And since the index is computed by summing the several indicator variables in the IRRC database, we are also in a unique position to use our labeled dataset to reevaluate the G-Index, correcting it on an item-by-item basis in situations where we found evidence of a clear miscode.

To implement our corrections, we reiterate that we utilized the conservative approach described above to detect and then correct miscodes. For each firm observed in each year of the IRRC, we began with the value of the G-Index as reported in the IRRC dataset. For the issuers we could match, we moved incrementally through the binary governance variables one at a time, determining (per the conservative approach) whether there was an unmistakable coding error in the IRRC. If none was found, we moved onto the next variable. If there was an unmistakable coding error, we manually corrected the value of the index by one point upwards or downwards (depending on the variable). We repeated this process ad seriatim for all matched issuers and all years in the IRRC database until we had exhausted

150 See supra notes 38–44 and accompanying text.
the list of labeled variables tracked in the CCG data that corresponded to elements of the G-Index.151

By way of illustration, recall that in our director exculpation example above, it became clear that the IRRC erroneously indicated that ABC Inc. had exculpated directors when in fact it had not. Because the existence of an exculpation provision would ordinarily imply an increase in the firm’s G-Index during that year, it follows that the G-Index for ABC must have been erroneously increased by one, reflecting this faulty exculpation designation. Our protocol corrected that mistake, reducing the G-Index of the firm in that year by one point. A similar process—crossing charter contents and state law—applies to all other analogous variables comprising the index.152

We reiterate that we take care to make these adjustments only when there is a clear error in the IRRC, as per the conservative approach. Thus, in some cases where our labeled datasets and the IRRC conflict, we might still refrain from making an adjustment, because we cannot satisfy the clear error standard. We thus give the IRRC the benefit of the doubt even in cases where we have grounds to suspect a coding error.

Consider first our assessment of errors along a very simple metric: for those firms and years where a comparison was possible, how frequently was the reported G-Index score incorrect? As illustrated in Table 2, the answer is alarming. Averaging over all years and all matched companies, we find the G-Index to be inaccurate over four-fifths of the time (82.95%). More disconcertingly, as with director exculpation, we find the incidence of error grows in magnitude over time (from 73.68% in 1990 to 88.58% in 2006), even as the database was generating increased attention among academics, regulators and practitioners.

We emphasize that this error rate is almost certainly a lower bound, since we deployed the conservative error correction rubric, intervening only for unambiguous errors; we made no corrections to probable errors when it was still possible that the IRRC reflected a provision not in our corpus (such as bylaws, contracts, and so forth). The estimated error rate also errs on the conservative side because our labels do not track every single one of the elements that comprise the index. Notwithstanding these constraints that bias our miscoding estimates downward, this is a distressing error rate for a core dataset that has long been the very foundation of empirical corporate governance research.

151 When we were unable to match an IRRC firm to the CCG, we left the G-Index intact. We exclude these unmatched firms in the discussion that immediately follows, but we include them in several of our replications of the GIM results in the subsequent subsection as a sensitivity analysis.

152 A description of our protocol is included in Appendix B.
Table 2: G-Index Coding Error Incidence, by Year (Matched Issuers)

<table>
<thead>
<tr>
<th>Year</th>
<th>No Error (%)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>26.32</td>
<td>73.68</td>
</tr>
<tr>
<td>1993</td>
<td>23.22</td>
<td>76.78</td>
</tr>
<tr>
<td>1995</td>
<td>22.47</td>
<td>77.53</td>
</tr>
<tr>
<td>1998</td>
<td>20.8</td>
<td>79.2</td>
</tr>
<tr>
<td>2000</td>
<td>15.74</td>
<td>84.26</td>
</tr>
<tr>
<td>2002</td>
<td>13.75</td>
<td>86.25</td>
</tr>
<tr>
<td>2004</td>
<td>12.99</td>
<td>87.01</td>
</tr>
<tr>
<td>2006</td>
<td>11.42</td>
<td>88.58</td>
</tr>
<tr>
<td>Total</td>
<td>17.05</td>
<td>82.95</td>
</tr>
</tbody>
</table>

Of course, the mere existence of an error in the index may not be fatal if its magnitude constitutes something akin to rounding error. In other words, if the overall size of the observation error remains modest, perhaps the noise detected above might not be too troubling.\footnote{We allow for this possibility with a scholarly grain of salt, given the 80%+ error rate reported in the text. Indeed, given this error rate, the best-case scenario for salvaging the G-Index against the woes of measurement error would be if it were exactly right 20% of the time, too low by one point 40% of the time, and too high by one point the remaining 40%. In that case, the overall index would be unbiased on average, but the errors would still have a standard deviation of around 0.9, fully one-third the size of the standard deviation in the G-Index itself (of 2.71 in our matched data).} Our data permit analysis here as well, and we also find substantial cause for concern. The histogram in Figure 6 below demonstrates the overall magnitudes of the G-Index errata (even with our conservative rubric for correction). It exhibits considerable variation in our matched firms, with an overall standard deviation of 1.83. Relative to the variability of the G-Index as a whole (whose standard deviation is 2.71),\footnote{As noted above, the standard deviation of the G-Index for our matched-company years is also 2.71, suggesting that our matching protocol rendered a representative set of matches.} that is a distressing noise to signal ratio.

The aggregated errors we detect using the CCG database not only introduce considerable noise, but also a discernible bias.\footnote{We compute bias by computing the mean difference (by year) between the G-Index and the CCG-Index. If there is noise and no bias, that mean difference would hover around zero. But it does not, as the discussion in the text elucidates.} Specifically, our corrections reveal an additional downward bias in the G-Index of around -0.75 points overall, one that grows worse (not better) over time, as the right-hand panel of Figure 6 illustrates. By 2006, even under our conservative re-coding protocol, the G-Index retains roughly the same degree of measurement error variability, but compounds it with a downward bias of nearly 2 points.
At the risk of some overkill, we emphasize once again that our error-correction approach errs strongly on the side of conservatism in several ways. First, we reassessed only 17 of the 24 criteria in the GIM database that are confirnable from our charter texts and labeled datasets. Moreover, we avoided hazarding a guess (even an educated one) on whether various dimensions were likely miscoded, and we only corrected those inputs that we could be certain were erroneous, leaving in place designations where we could not identify an error with certainty.

It warrants noting that our choice to highlight flaws in the G-Index and IRRC specifically is strictly a matter of authorial choice, warranted (in our view) by the index’s prominence in the literature and its centrality to appreciable follow-on research (such as the E-Index, O-Index, and D-index to name a few). That said, we are by no means limited to this particular single comparison: the CCG can easily be recruited into a quantitative battle of the bands with other well-known governance databases. In Online Appendix C, for example, we show how the CCG stacks up against a different source: the contemporary ISS governance database (2007–present)—one that itself has attracted considerable academic attention (but contains insufficient data to reassemble the G-Index). There, we also find a disconcerting pattern of misclassification rates, comparable to those illustrated above, reinforcing our concerns about data integrity and accuracy.

E. The Arbitrage Value of Good Governance Revisited

Having shown that the CCG dataset exposes disconcerting errors in popular corporate governance indices, an immediate next question concerns assessing what that implies for the field more broadly. As noted above, scores

156 See supra notes 45–52 and accompanying text.
of “folk wisdoms” from empirical corporate governance were generated from these data, many of which are now among the most well-known in the field. Do they hold up?

Testing all the implications would take more time, space, and reader patience than is achievable here, but for the sake of illustration, we return once again to the G-Index, using our CCG corpus to reassess one of the most famous empirical findings in all of law and finance, from GIM.157 As noted above, their seminal examination introduced the G-Index, for the first time peering into granular, firm-specific governance practices and linking them to various financial performance metrics. Perhaps the most famous finding was that “good governance” is also an arbitrage opportunity. More precisely, GIM showed that a “long-short” investment strategy of buying “democratic” firms (in the lowest decile of the G-Index) and short-selling “dictatorial” firms (in the highest decile) would systematically outperform the market by 71 basis points \textit{per month} (the equivalent of an astonishing 8.9\% per year).158 This finding was (and remains) a striking result, a serviceable cocktail party topic, and a veritable modern-day slogan that informs policy and academic debates in corporate governance the world over.159

A now-obvious red flag, however, is that the result depends critically on the contents of the IRRC database—the very same resource that we showed to be alarmingly inaccurate. Might this inaccuracy have infected their ultimate results (not to mention the hundreds of scholarly contributions that followed after)?

The answer is not clear on \textit{a priori} grounds. On the one hand, the GIM results could grow even stronger once the miscodes are rectified: This is what one might ordinarily expect when an independent variable (like G-Index) is muddled by random observation error.160 In that case, cleaner data would be expected to sharpen and amplify the original results. On the other hand, data infirmities can sometimes be the root cause of an evident statistical result,

\begin{itemize}
\item 157 Gompers et al., \textit{supra} note 6.
\item 158 See \textit{supra} text accompanying \textit{supra} note 42. For those keeping score, a basis point is simply \textit{1/100} of a percentage point, and thus conversion into an excess return is given by \((1+0.0071)\times 12 - 1 = 0.089\), or 8.9\%.
\item 159 See \textit{supra} notes 45–60 and accompanying text.
\item 160 This effect is sometimes referred to as “classical” measurement error, and it represents the case where the measurement error of a variable is independent of the variable’s “true” value. \textit{See} John Bound, Charles Brown & Nancy Mathiowetz, \textit{Measurement Error in Survey Data}, in 5 \textit{HANDBOOK OF ECONOMETRICS} \textit{3705}. \textit{3707} (James J. Heckman & Edward Leamer eds., 2001) (“Most discussions of measurement error are based on the ‘classical’ assumption that errors in measuring a particular variable are uncorrelated with the true value of that variable, the true values of other variables in the model, and any errors in measuring those variables.”); Darren Lubotsky & Martin Wittenberg, \textit{Interpretation of Regressions with Multiple Proxies}, \textit{58 REV. ECON. & STAT.} \textit{549}, \textit{550–51} (2006) (explaining the assumptions of classical measurement error); see also Aaron Chalfin & Justin McCrary, \textit{Are U.S. Cities Underpoliced? Theory and Evidence}, \textit{100 REV. ECON. & STAT.} \textit{167}, \textit{167–73} (2018) (applying the classical measurement error model). \end{itemize}
typically when such infirmities are not the artifact of random noise. In this case, the effect of cleaner data can weaken the results. And for the G-Index errors, it is not clear a priori which of these stories is most likely to hold.161

To investigate these questions, we set about reanalyzing the GIM governance-arbitrage result using the CCG data. The fruits of this effort are contained in Table 3 (which is fashioned after the portion of GIM that reports on the arbitrage result162). The first column of the table simply reproduces their reported results, with each row associated with an approximate decile of governance-indexed portfolios, ranging from no greater than 5 (democratic firms) to no less than 14 (dictatorial firms). The estimates reported in the Table represent the unexplained return (or “Alpha”) generated by an investment in a value-weighted portfolio drawn from that decile,163 and consequently taking a “short” position in that portfolio would generate the same return with the opposite sign. Consequently, the difference between the most democratic portfolio’s Alpha and most dictatorial portfolio’s Alpha represents the unexplained return of the long-short investment described above. That difference generates their celebrated 71-basis-point monthly return. The second column represents our best effort at an exact replication of GIM’s results with historical data from the IRRC. The remaining columns represent a re-estimation of their results using our CCG-corrected data under a variety of approaches.

As one can see from the table, our exact replication (column 2) is nearly spot on with the original, bolstering confidence that we can, in fact, substantially replicate GIM’s findings with their own data.164 The third column represents our replication using the original GIM dataset, but one where we substituted the CCG-Index (i.e., the “corrected” G-Index value as described above) for the reported one whenever we were able to generate a

161 Our best a priori guess would be on the latter, however. Because the G-Index is the aggregation of two dozen dummy variables, it is a likely candidate for non-classical measurement error. The most extreme version of this effect is for binary variables (where measurement error can never be classical by definition), but this problem afflicts bounded discrete variables too. Black et al., supra note 82, at 743. In fact, it merits observing that the most well-known result in GIM—which focuses on the two most extreme deciles in the G-Index—is especially likely to exhibit non-classical measurement error. See Bound et al., supra note 160, at 3724–26.

162 See Gompers et al., supra note 6, at 123 tbl.VI.

163 Specifically, the reported alpha values corresponded to the constant term of a four-factor Fama-French-Carhart asset pricing estimation on monthly returns for each decile’s value-weighted portfolio. By construction, this constant represents the average return that cannot be explained by conventional asset pricing factors. Id. at 122–23.

164 One potential reason for the slight divergence between our own results and the ones reported in GIM’s original analysis could be that some of the data used in these calculations reportedly changed over time. See Pat Akey, Adriana Z. Robertson & Mikhail Simutin, Noisy Factors (Sept. 24, 2021) (unpublished manuscript), https://ssrn.com/abstract=3930228 [https://perma.cc/H34Z-QWRE].
correction. It bears noting that during this period of years (1990-1998), we faced limitations in matching up our dataset, and thus only about 42% of the GIM firm-years could be checked and corrected. In unmatched issuers, we simply continued to use their originally reported scores. Even with this modest correction, however, we estimate a discernible lower unexplained return to 59 basis points (bps) (representing a one-sixth attenuation from the original, the equivalent of a reduction in the unexplained annual spread from 8.9% to 7.3%). In the fourth column, we perform a similar analysis, but with a recently downloaded version of the IRRC database (which appears to have been modified slightly in 2010, subsequent to GIM’s original analysis), and the unexplained return dropped even further to 49.9 bps (representing a reduction in the unexplained annual spread from 8.9% to 6.2%). Finally, in the fifth column we returned to the original IRRC dataset and ran our results with only our matched firms. Here, we estimate an unexplained alpha of 55.9 bps (representing a reduction in the unexplained annual spread from 8.9% to 6.9%).

All told, our results strongly suggest that not only do the errors in the G-Index affect results, but that they do so in a disconcerting way. In each of the reported replications that use our corrected CCG-Index, the estimated abnormal return grows weaker—exactly the opposite movement from what one would expect had the G-Index merely been hamstrung by garden-variety measurement errors. Rather, each replication drives appreciably downward the estimated extent to which “good governance” predicts abnormally good returns to investors. Averaging across the columns, approximately a quarter of the 8.9% premium reported by GIM dissolves in the presence of corrected data.

165 The main reason for this limitation is that our dataset only allows us to verify the accuracy of those company-years in the GIM data for which at least one fully restated charter is available on EDGAR. As EDGAR only went live in the mid-1990s, the coverage of company-years from the early 1990s remains sparse.

166 We confirmed that the GIM analysis with the uncorrected G-Index data and matched firms delivers estimates almost exactly on par with the results reported in the first column.
It is worth noting that even with our corrections, the GIM arbitrage result does not “go away” completely. And accordingly, one could entertain the possibility that the original result—at least reliant on imperfectly coded data—merely generated a result that was still “real” but just a little too rosy. While we cannot rule out this possibility, we are skeptical. The fact that the attenuation effect is discernible after correcting only the matched firm-years (42%) with a deliberately conservative rubric raises serious concerns that Table 3 vastly understates the effect of the problem. And, reiterating our point above, the directionality of the change is particularly concerning, since it moves counter to what one would expect to see with classical measurement error adding just mere noise to the effect.

Unpacking and testing these possibilities are beyond the scope of this paper, so we leave that project to future research (at least for now). And there may be considerable unpacking left to do: as noted above, a substantial number of empirical corporate governance contributions of the last two decades rely on the same data sources as did GIM. At the same time, the open-source nature of the CCG database means that many scholars can participate in this enterprise. The above exercise (or something close to it)
can be used to revisit the results of dozens of well-known empirical corporate governance results in the literature.167

III. CORPORATE GOVERNANCE AS “BIG DATA”

Although the CCG provides a powerful and novel way to reevaluate several old chestnuts of corporate governance, its primary—and most exciting—use is prospective. This Part spotlights some of the ways that future scholars and policymakers can make use of the CCG. In particular, the CCG’s underlying textual corpus allows for emergent techniques that use machine learning and computational text analysis.168 We explore some preliminary findings of our own using those techniques here. Such techniques, when applied to the CCG and its underlying corpus, have the potential both to improve on the accuracy of conventional empirical practices and to broaden the horizons of corporate governance research.

A. Document-Level Trends

First, the CCG corpus allows us to identify some interesting document-level trends. In Part II, we noted that some of the most rudimentary measures of our charter documents helped show that charters of non-Delaware companies have become longer and less readable over time, effectively converging with those of Delaware-incorporated companies. Here, we use computer processing over our full corpus to explore several other metrics.169

Type-Token Ratios. The “Type-Token Ratio” (TTR) is a common metric that represents the ratio of unique terms divided by the total number of words in the document.170 This metric helps researchers understand a document’s repetitiveness and redundancy.

We illustrate our TTR findings in Figure 7. The top two panels show the mean TTR for all charters that were in place in a given year, distinguishing between Delaware and non-Delaware issuers, and also subdividing between

167 See generally Bebchuk et al., What Matters, supra note 11; Karpoff et al., supra note 11; Madanoglu & Karadag, supra note 45; Straska & Waller, supra note 10; Harford et al., supra note 49; Core et al., supra note 11; Adams & Ferreira, supra note 51; Bebchuk et al., Disappearing Association, supra note 11; Daines et al., supra note 52.
168 See sources cited supra note 16.
169 The use of these techniques requires some preprocessing that is by now pretty standard in the field of computational text analysis. All measures presented below are based on the text of charters from which we stripped any content other than words as well as so-called stop words. After that, we used a technique called stemming to avoid treating simple inflected variations of words as different words.
the full restatements only, and the complete set of effective charter documents in place in a given year (tacking on any partial amendments).\footnote{For more details on the treatment of piecemeal amendments within the corpus, see supra note 117 and infra Appendix B.}

Our analysis shows that the overall TTR ratios of charters have generally declined over time under either measure. As was the case for changes in charter length and readability, most of this change has been outside of Delaware, with non-Delaware issuers substantially converging with their Delaware counterparts by the end of our sample. This trend suggests that much of the growth in length of charters outside Delaware is accompanied by a greater tendency towards repetitiveness or redundancy.

\textit{Syntactic Similarity.} Another interesting text analysis measure concerns inter-document comparisons, which focus on assessing the similarity between two or more documents. It is unclear what trends to expect here: the increasing attention on “tailored” corporate governance regimes might lead one to predict that governance documents have grown less similar to one another over time. However, because shareholder activists, arbitrageurs, and proxy advisory firms—among others—have become more sophisticated in recent years, we might also expect that results lead in the other direction.

One common technique in machine learning of assessing document similarity is to measure the extent to which a numerical representation of one document (represented by a mathematical vector) aligns with that of another document.\footnote{Jeremy McClane, for example, has used this technique to consider the role of boilerplate in securities disclosure. Jeremy McClane, \textit{Boilerplate and the Impact of Disclosure on Securities Dealmaking}, \textit{VAND. L. REV.} 191, 222-25 (2019).} Many anti-plagiarism and e-discovery algorithms use this approach,\footnote{See, e.g., Robin Küppers & Stefan Conrad, A Set-Based Approach to Plagiarism Detection (2012) (unpublished paper), http://ceur-ws.org/Vol-1178/CLEF2012wn-PAN-KuppersEt2012.pdf [https://perma.cc/67T6-9UPE].} and it is often captured through a “cosine similarity” statistic that ranges from 0 (reflecting utter dissimilarity) to 1 (reflecting complete similarity). We compute this measure and use a set of plots similar to the plots in Figure 7 depicting Type-Token Ratios to track it over the span of the CCG dataset.\footnote{We employed a standard set of computational text analysis transformations before making these computations. See infra notes 180–181 and accompanying text for greater elaboration.} The lower panels in Figure 7 illustrate the mean cosine similarity of each charter document with other charters from that year that were among the 25% of the documents most similar to it (its “25% nearest neighbors”). As shown in the figure, inter-document similarity has also grown discernibly during the span of the CCG dataset (both inside and outside of Delaware), but it has remained uniformly higher in Delaware.\footnote{One potential explanation for the growth in similarity is the fact that the numbers of charters available in the CCG grows over time. However, this effect cannot fully explain the growth}
Document measures such as these are helpful to explore industry- and firm-level characteristics. Do these types of measures reflect (or predict) attributes about the nature of the company’s business, size, and profitability? Table 4 highlights a variety of document measures across these three slices of the CCG.

Consider first how our corpus breaks down by industry. Here, the content of corporate charters appears to fluctuate considerably, both across industries and (in some cases) over time. Panel A reports on the mean of several of the metrics discussed above, but this time disaggregated across different one-digit SIC sectors. Several characteristics stand out. Most notably, issuers in the Finance sector stand out across all of the aforementioned measures: they are long (over 8,000 words on average), complex (scoring second lowest in F-K readability), repetitive (scoring lowest on type-token ratios) and overall, quite similar (scoring highest in cosine similarity). On the other end of the

176 The Standard Industrial Classification system is used by the government to classify different industry areas. SIC 60, for instance, refers to banks. Guidance: Standard Industrial Classification of Economic Activities (SIC), GOV.UK (Jan. 9, 2018), https://www.gov.uk/government/publications/standard-industrial-classification-of-economic-activities-sic [https://perma.cc/QL56-4NSR].
spectrum, the service sector typically has charters that are relatively short, tailored, easy to read, and (relatively) less emulatory.

Table 4: Charter Content Means, by Industry, Asset Value & Tobin-Q Categories (Observations at the Firm-Year Level)

<table>
<thead>
<tr>
<th>Industry/Quarter</th>
<th>Charter Length Mean</th>
<th>F-K Readability Mean</th>
<th>Type-Token Ratio Mean</th>
<th>Cos-Sim Nearest 25% Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>3,850.11</td>
<td>9.5264</td>
<td>0.2527</td>
<td>0.3254</td>
</tr>
<tr>
<td>Finance Insurance & RE</td>
<td>8,097.73</td>
<td>12.6549</td>
<td>0.2261</td>
<td>0.3167</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4,938.61</td>
<td>13.2327</td>
<td>0.2575</td>
<td>0.3084</td>
</tr>
<tr>
<td>Mining</td>
<td>4,446.61</td>
<td>13.0641</td>
<td>0.2692</td>
<td>0.3023</td>
</tr>
<tr>
<td>Retail Trade</td>
<td>4,802.60</td>
<td>14.7207</td>
<td>0.2613</td>
<td>0.3087</td>
</tr>
<tr>
<td>Services</td>
<td>4,368.52</td>
<td>15.6347</td>
<td>0.2569</td>
<td>0.3147</td>
</tr>
<tr>
<td>Transp Comm Elec</td>
<td>5,893.04</td>
<td>10.9905</td>
<td>0.2464</td>
<td>0.2985</td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>5,510.26</td>
<td>13.3965</td>
<td>0.2493</td>
<td>0.3103</td>
</tr>
<tr>
<td>Other</td>
<td>3,757.52</td>
<td>16.8329</td>
<td>0.2792</td>
<td>0.3267</td>
</tr>
<tr>
<td>Total</td>
<td>5,542.00</td>
<td>13.3120</td>
<td>0.2507</td>
<td>0.3101</td>
</tr>
</tbody>
</table>

Panel A: SIC Industry Group

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Charter Length Mean</th>
<th>F-K Readability Mean</th>
<th>Type-Token Ratio Mean</th>
<th>Cos-Sim Nearest 25% Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1</td>
<td>3,859.35</td>
<td>18.9441</td>
<td>0.3205</td>
<td>0.2819</td>
</tr>
<tr>
<td>Quartile 2</td>
<td>3,915.37</td>
<td>18.9652</td>
<td>0.2842</td>
<td>0.2947</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>4,452.35</td>
<td>15.4412</td>
<td>0.2638</td>
<td>0.3076</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>6,471.78</td>
<td>11.0583</td>
<td>0.2363</td>
<td>0.3146</td>
</tr>
<tr>
<td>Total</td>
<td>5,544.16</td>
<td>13.3122</td>
<td>0.2506</td>
<td>0.3101</td>
</tr>
</tbody>
</table>

Panel B: Asset Value Quartile

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Charter Length Mean</th>
<th>F-K Readability Mean</th>
<th>Type-Token Ratio Mean</th>
<th>Cos-Sim Nearest 25% Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1</td>
<td>6,926.03</td>
<td>10.3385</td>
<td>0.2397</td>
<td>0.3128</td>
</tr>
<tr>
<td>Quartile 2</td>
<td>5,815.96</td>
<td>12.1511</td>
<td>0.2380</td>
<td>0.3132</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>5,137.17</td>
<td>13.3775</td>
<td>0.2511</td>
<td>0.3106</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>3,984.94</td>
<td>16.5338</td>
<td>0.2742</td>
<td>0.3041</td>
</tr>
<tr>
<td>Total</td>
<td>5,398.24</td>
<td>13.1673</td>
<td>0.2502</td>
<td>0.3104</td>
</tr>
</tbody>
</table>

Panel C: Tobin’s Q Quartile

Larger companies are generally thought to be more complex, and Panel B of the Table bears this intuition out, disaggregating the population into size quartiles according to total asset value (as reported in the issuer’s 10-K for the year observed). Here, one observes substantial monotone trends as one moves through the size quartiles: larger firms have longer, less readable, more repetitive, and more emulatory charters on average than do their smaller counterparts.
Panel C does something similar, but here we subdivide companies into quartiles based on their Tobin's \(q \) value each year, which is thought to measure the “value added” of the firm’s operation.\(^\text{177}\) Here, we once again see a trend that exhibits substantially \textit{the reverse monotonic relationships} that we saw with asset value. As we move into higher Q ratio quartiles, mean charter lengths decline, readability increases, and redundancy falls. There does not appear to be a strong trend in inter-document similarity, however.

There is much more one can do with these sorts of measures. But even with this cursory appraisal, much real economic activity within firms leaves footprints in corporate governance documents (or perhaps vice versa). This observation suggests intriguing possibilities for researchers who wish to track whether and how a variety of political and economic phenomena (such as common ownership patterns) interact with the distribution of authority and control rights in firms.

\[\text{B. Latent Semantic Content}\]

A second exciting aspect of the CCG is its potential for unleashing a rich array of tools from computational textual analysis that allow for deeper inquiry into document substance and structure.\(^\text{178}\) Below we report on a few such applications, relating to legal origins and sectoral effects, and we end by demonstrating how text analysis helps tell part of the story of the evolution of an industry during moments of upheaval.

To the legal traditionalist, many of the tools we discuss below may seem (for want of a better term) un-lawyerly. After all, most of them begin by taking the texts of admittedly complex and nuanced legal documents, distilling them into numeric vector representations, and manipulating those representations to isolate “clusters” of affiliated or similar documents. While such mathematical renderings would seemingly be at odds with traditional legal analysis, these tools are surprisingly powerful, and many parts of legal practice have long embraced computational techniques to augment traditional approaches.\(^\text{179}\) It is in that spirit that we employ them below.

\(^{177}\) The Table uses the ratio of the issuer’s market value to its book value to measure Tobin’s \(q \). While not precisely equal to \(q \), the market/book ratio is a widely accepted approximation. See Tim Adam & Vidhan K. Goyal, \textit{The Investment Opportunity Set and Its Proxy Variables}, 31 J. FIN. RSCH. 41, 41 (2008) (“[T]he market-to-book assets ratio has the highest information content with respect to investment opportunities.”).

\(^{178}\) See, e.g., sources cited \textit{supra} note 16.

\(^{179}\) These include discovery and motion practice, transactional due diligence, and predicting outcomes of legal disputes. See sources cited \textit{supra} note 16.
We transform each of the charters in our corpus into a vector representation based on the vocabulary used. Because our corpus allows us to observe firms’ charters multiple times, we develop two alternative representations, which we refer to as the "snapshot" and the "mashup" versions. The snapshot treats each year the company is publicly traded as a single observation, delivering a vector representation of the company’s charter as it existed on January 1 of that year. Consequently, any company observed over several years in our dataset will (by definition) be associated with several snapshots of its charter. The mashup combines the various snapshots together into a single composite for the company, taking the mean values of vector elements for years in which we observe snapshots.

In many applications (including ours), a vector representation of a document may have dozens, hundreds, or even thousands of dimensions—far too many to illustrate graphically. Nevertheless, the dimensions are derived using a technique designed to ensure that each successive dimension has diminishing explanatory power. Consequently, by limiting attention to just the first two dimensions of our vectorized texts, we can retain the most important sources of variation while still enabling us to represent the “location” of each document in two-dimensional space. The panels of Figure 8 do just that for the mashup versions of company charters. Charters that bear strong similarities to one another are located in close proximity, and accordingly if there are several mutually similar documents, they will tend to cluster in tight local neighborhoods; documents that are highly dissimilar, on the other hand, will be far apart, and several mutually dissimilar documents will scatter untidily about the plot, exhibiting no obvious clustering pattern.

Even in this low dimensional setting, the panels from Figure 8 show discernible evidence of clustering—patterns that directly bear on whether jurisdiction and/or legal origins leave their marks on firm governance. The top panel of the Figure utilizes color codings to differentiate between each

180 More specifically, each document was distilled into a vector of ones and zeros depending on whether a word was featured in the document or not, and then rescaled using a familiar term-frequency/inverse-document frequency (tf-idf) transformation. For details, see Frankenreiter & Livermore, supra note 16, at 43 (explaining these methods) and Talley, supra note 16, at 192-94 (applying these methods).

181 More precisely, the mashup vector for each company consists of the averaged tf-idf scores across all observed years. There are, of course, other possibilities for combining documents, but we opted for this because of its ease of use and the fact that the main alternative (appending all years’ charters into a “mega-charter”) might introduce unwanted distortions.

182 For a more detailed explanation, see Talley, supra note 16, at 194-95.

183 To obtain two-dimensional representations, we implement two steps. In the first step, we use singular value composition (SVD) to reduce the number of dimensions to 50. In the second step, we use the t-SNE algorithm to obtain two-dimensional representations. See Geoffrey Hinton & Sam Roweis, Stochastic Neighbor Embedding, in ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15, at 857 (Suzanna Becker, Sebastian Thrun & Klaus Obermayer eds., 2002).
company's state of incorporation184 and highlights eight states that are well represented incorporation homes within our dataset.185

Figure 8: Governance Clustering and State/Legal Origin (in two-dimensional space)

184 We tracked the incorporation date as of the date of filing, thereby picking issuers who reincorporated out of state. For such issuers, the Figure classifies them by which state they were incorporated in for the longest amount of time.

185 See Online Appendix D for a state-by-state breakdown.
Several interesting features of the top panel stand out. First, there appear to be relatively tight clustering patterns for many states, though this does not appear to be true categorically. An example of a state whose companies exhibit tight clustering is California, depicted with the dense colony of magenta dots on the right side of the panel. The fact that the charters of almost all public California companies fall into this tight neighborhood suggests that their charters are very similar to one another, and very dissimilar to the charters of companies incorporated elsewhere. Maryland, represented by forest green dots on the top panel, shows an analogous pattern. Maryland has a considerable share of the incorporation market for real estate investment trusts, and virtually all of the Maryland issuers in this cluster are, in fact, Real Estate Investment Trusts (REITs).

California and Maryland’s patterns stand in stark contrast with New York, represented in dark blue. New York companies are scattered haphazardly with no strong pattern, suggesting comparably low levels of intra-state similarity. And, in some ways similar to New York, the dominant majority of Delaware-incorporated firms in our dataset (58% of the observations, depicted as black dots) also appear to sprawl entropically across all quadrants of the diagram, indicating substantial governance heterogeneity (at least as measured by the latent semantic content of chartering documents).

The bottom panel reproduces the identical geographical layout as the top one, but it color-codes charters differently, based on the legal origin of the state’s corporate code. Here we subdivide issuers into three groups: (i) those incorporated in Delaware (black dots), (ii) those incorporated in states that adopted the Model Business Corporation Act (MBCA) (a model business law that was created by the American Bar Association and adopted by about half of all states186) in substantial part (red dots), or (iii) those incorporated neither in Delaware nor in any jurisdictions that embraced the MBCA (gray dots).187 In contrast to the bottom panel, there appears to be very little evidence that a common “legal origin” of the state’s corporate statute matters much for determining or predicting the contents of charters, at least as measured by whether the state built its law on the basis of the MBCA. Even the few apparent red clusters in MBCA states appear to be artifacts of intra-state clustering, since those same local neighborhoods are clearly associated with distinct states, such as Massachusetts and Virginia, in the top panel. These figures are consistent with the view that state of incorporation can and

often does shape the content of charters, but common statutory origin appears to have little if any explanatory power.188

Another facet of the textual corpus is related to industry group effects. Figure 9 once again reproduces the same two-dimensional representations from Figure 8 above, this time color coding by industry sector (at the one-digit SIC group). Here, we see notable evidence of clustering for certain sectors, particularly in finance (pictured in red, once again channeling those Maryland REITs identified above) and manufacturing (which manifests several sub-sector clusters).189 This pattern is also consistent with Table 3, where the finance sector was an outlier in all pertinent document metrics (length, readability, TTR, and cosine similarity).

Figure 9: Governance Clustering by Industry (in two-dimensional space)

188 Cf. Jeffrey M. Gorris, Lawrence A. Hamermesh & Leo E. Strine, Jr., Delaware Corporate Law and the Model Business Corporation Act: A Study in Symbiosis, 74 LAW & CONTEMP. PROBS. 107, 108 (2011) (“[T]here have been occasions on which [the MBCA’s] hallmark precision has impaired its utility as a model, and its assertions of superiority have been overblown.”). In Online Appendix E, we report several additional analyses that investigate this question from different angles. None of these approaches provides any appreciable evidence that charters from two different jurisdictions sharing an MBCA origin would be more similar to each other than charters that did not share this origin.

189 In a separate set of robustness checks, we used a more general statistical test for whether the clustering of charters of companies from the same industry that can be observed in Figure 9 could be explained as a result of chance. The results from this analysis indicate that this is not the case. This result suggests that a firm’s corporate governance is at least partly a function of its area of business.
Although our focus thus far has been trained on the “mashup” versions of company charters (blending all years of a company’s charter), the snapshot versions of our corpus are also well situated to unlock interesting dynamic clues about how governance evolves over time. The transformation of the banking sector (a subset of the finance industry) during the Financial Crisis provides an interesting example of this story. Figure 10 illustrates diagrams similar to those above, but each is now separately generated for differing snapshot years (representing 2008, 2010, and 2012, respectively). Banks are represented with red dots, while all other companies are in gray. In 2008, the chartering contents of bank charters appeared far from homogenous, with few (if any) clustering neighborhoods. By 2010, however, this pattern changed dramatically, with a tight cluster of banks emerging—and this cluster clearly persisted into 2012.

It does not take a rocket scientist (or rocket science attorney) to make an educated guess as to why bank charters began clustering at this moment in time. In October 2008, the United States government interceded at the height of the financial crisis, infusing Troubled Asset Relief Program (TARP) funds into the coffers of dozens of large and medium-sized banks. These infusions typically took the form of preferred equity purchases that gave the government considerable shareholder rights—rights that were formally recorded at some point in early 2009. Accordingly, insofar as they affect the text of corporate charters (as new share issues must), they largely show up in the CCG on January 1, 2010 (depicted in the middle panel). Since the US government was effectively a large and powerful horizontal shareholder across multiple banks, it is not surprising that TARP administrators used that power in bargaining, so that the basic terms and conditions of the preferred share issuances stayed relatively uniform. Indeed, many bank recipients of TARP funds simply inserted a verbatim version of a standard provision into their corporate charters, resulting in a discernible clustering of charters within this industry.

While governance studies no doubt feature prominently in the study of banking history, we are not aware of work that uses computational analysis to accomplish the task. Cf. Charles W. Calomiris & Mark Carlson, Corporate Governance and Risk Management at Unprotected Banks: National Banks in the 1890s, 119 J. FIN. ECON. 512 (2016) (analyzing the impact of corporate governance structure on banking policy and practice in the 1890s).

We treat as banks all companies for which Compustat reports the SIC code “60” (designated as “Depositary Institutions”).

The dark red cluster in the middle and bottom panel of Figure 10 includes the following firms: First Financial Bancorp; Firstmerit Corp; Suntrust Banks Inc; Old National Bancorp; First Midwest Bancorp; Umpqua Holdings Corp; Valley National Bancorp; City National Corp; Whitney
investments and left the program, this clustering pattern steadily began to dissipate, and it had largely disappeared by 2018.

Figure 10: Transformation of Bank Governance During the Financial Crisis

Although computational text analysis is surely overkill for documenting the banking sector’s well-known transformation during the Financial Crisis,
it is comforting to see that a tool seemingly as blunt as document vectorization (into two dimensions, no less) can still capture a notorious wave of governance convergence. Perhaps more exciting is the use of these and similar techniques to tease out other, less clear-cut evolutionary trajectories. For example, there is now a growing and controversial literature positing a provocative circumstantial argument suggesting that passive investing is anticompetitive, since it results in large common/horizontal ownership in the ownership blocks held by index funds across sectors.\footnote{See, e.g., David Gilo, \textit{The Anticompetitive Effect of Passive Investment}, 99 \textit{Mich. L. Rev.} 1 (2000) (arguing that passive investing may substantially lessen competition); Elhaug, \textit{supra} note 18 (arguing that common ownership may anticompetitively raise prices); David Gilo, Yossi Moshe & Yossi Spiegel, \textit{Partial Cross Ownership and Tacit Collusion}, 37 \textit{Rand J. Econ.} 81 (2006) (arguing that when there is passive partial cross-ownership of firms, firms engage in "tacit collusion"); Posner et al., \textit{supra} note 18 (arguing that institutional investors, who own shares passively, may engage in anticompetitive behavior); Yaron Nili, \textit{Horizontal Directors}, 114 \textit{Nw. U. L. Rev.} 1179 (2020) (discussing the common ownership debate and the role common directors in the same industry may play in enabling anticompetitive practices).}

Several of the combatants in this area have raised important questions about identifying the causal mechanism (if any) that converts common ownership into oligopolistic power (e.g., compensation, lobbying, intra-firm governance, etc.).\footnote{See sources cited \textit{supra} notes 18–19.} A natural way to test whether common ownership affects governance might attempt to measure if and to what extent the emergence of common or horizontal ownership blocks also predicts patterns of convergence in the content of governance documents (such as charters and bylaws).

C. Supervised Learning Tools

Our textual corpus and labels are not only interesting for their descriptive applications: they also allow us to make some predictions. For example, as companies continue to file charters over time, they add to the corpus, and we can then use our labels to train a machine-learning classifier to quickly label the new filings. Doing so not only allows us to absorb the new additions into our database more quickly, but it also facilitates error detection and correction in all our existing labels (a task we have already implemented in part for this Article). Moreover, future researchers will also be able to use our corpus to generate new labels, indices, and evaluative metrics that are not currently part of any major governance data collection enterprise, including features such as forum selection provisions, board diversity provisions, stakeholder provisions, and the like.

Although space limitations preclude us from demonstrating the full range of the conceivable supervised learning applications, one that is directly relevant to our analysis above concerns our evaluation of the G-Index and
corrections thereto embodied in the CCG-Index. As discussed in Part I, the components of the G-Index continue jointly and severally to be used by corporate governance researchers to inform critical academic and policy debates. Because those components are purportedly derived in large part from governance documents themselves, our corpus (and labels) should bear a natural relationship to them, effectively allowing us to use the CCG database to “predict” the G-Index score. Similarly, our corpus can also allow us to predict the CCG-Index, giving us an indirect measure of the fidelity of each index to underlying governance documents and statutory structure.

Figure 11: ML Predictions of G-Index (Top) & CCG-Index (Bottom)196

196 Univariate OLS regression estimates of Predicted on Observed G-Index and CCG-Index overlaid on each panel, respectively. Data points in the scatter plots are “jittered” for visualization purposes due to stacking of observations around the regression lines. Significance: * = 0.05; ** = 0.01; *** = 0.001.
To explore these possibilities, we used each of the G-Index and CCG-Index to calibrate a machine learning classifier, generating predicted values of each index based solely on the semantic content of our corpus of charters and their associated labels. We took care to use identical, well-established estimation techniques to calibrate each classifier.\(^{197}\) The performance of our classifiers against their “target” index is depicted in the scatter-plot panels of Figure 11, with the G-Index on top and the CCG-Index below. Our calibrated classifier for the G-Index works reasonably well, successfully predicting 45\% of the variation in the index.\(^{198}\) In some respects, this result bolsters one’s confidence that the G-Index reflects something about company-level governance choices as manifested in the charter (as it purports to do). By the same token, the classifier fails to predict the remaining 55\% of the variation in the G-Index. Based solely on this analysis, one cannot tell how much of the prediction noise is due to (a) a limitation on what such classifiers can offer, or (b) inaccurate labeling of the underlying data used to formulate the G-Index.

The bottom panel uses the identical approach, but this time as applied to the predicted and actual values of the CCG-Index. It is immediately clear that this classifier also has good predictive power. More than good, in fact: the CCG-Index predictions are a much tighter fit than those of the G-Index, and the scatter-plot “cloud” is substantially more centered around our prediction line. Indeed, calibrating to the CCG-Index substantially increases our predictive power, from 44\% to 68\% of the variance in the respective indices. Put another way, when compared to the G-Index predictions, our CCG-Index predictions are more accurate by half, a result that is consistent with the

\(^{197}\) For the technically minded reader, we deployed lasso regressions on the principal components of the vectorized texts to generate all predicted values. This approach counteracts overfitting risks by imposing a multiplicative penalty (\(\lambda > 0\)) on the sum of the absolute value of estimated coefficients. It thus automatically shrinks the set of non-zero coefficients, retaining only the most explanatory ones. In our case, the penalty parameter (\(\lambda\)) was calibrated to minimize the sum of squared residuals in a ten-fold cross-validation, and the resulting coefficients were then used to generate predicted values as described in the text. For more on this utterly scintillating technique, see generally Robert Tibshirani, *Regression Shrinkage and Selection via the Lasso*, 58 J. ROYAL STAT. SOC’Y: SERIES B (METHODOLOGICAL) 267 (1996).

\(^{198}\) We reiterate that all predicted values were generated on an “out-of-sample” basis using a ten-fold cross-validation: the documents were split into ten arbitrary groups, and for each group the model was calibrated using only the remaining nine partitions, rendering predictions for the held-out group. Technically speaking, this tuning approach can still lead to overfitting, as we use the cross-validation both to compute the parameters used for model tuning and to estimate the accuracy of the estimates. However, we expect the extent of such overfitting to be insubstantial. See also Jacques Wainer & Gavin Cawley, *Nested Cross-Validation When Selecting Classifiers Is Overzealous for Most Practical Applications* (Sept. 25, 2018) (unpublished manuscript), https://arxiv.org/pdf/1809.09446.pdf [https://perma.cc/B55L-4L7N].
conclusion that our corrections indeed remediated substantial coding errors in the G-Index.199

IV. IMPLICATIONS AND THE ROAD AHEAD

For many readers, this Article may prove to be something of a Pandora's box: Most immediately, it problematizes several corporate governance “folk wisdoms” that have long been considered settled—including a result so beatified in the literature that it has achieved slogan status: that good governance translates into good returns. Using a deliberately conservative error-correction protocol, we demonstrated not only that the field’s standard metrics for good governance appear grossly inaccurate, but also that the connection between governance and investment returns is materially sketchier than previously thought. Governance may yet matter, but the case for it far less clear than we thought it was.200

We still do not know the full implications of the errors our analysis has begun to uncover. Hundreds of studies have incorporated GIM’s results or made use of the same questionable data. The various competitor indices are notable examples,201 but there are scores of others that use the data or indices as inputs or controls in their own empirical designs.202 Regulators, too, have turned to GIM and its progeny to support a litany of governance reforms.203 Even critics of governance indices have largely presumed that the underlying data are accurate.204 As a result, errors in popular governance datasets have plausibly propagated throughout much of the corporate governance universe, affecting law, policy, practice, and theory. Reexamining the robustness of

199 Because the CCG-Index corrections were themselves based on a direct labeling of the raw corpus, the alert reader might wonder whether a trained classifier would fare better for purely mechanical reasons in predicting the CCG-Index. We discount this concern on both conceptual and statistical grounds. First, the above approach constitutes a reasonable way to ascertain the reliability of our labeling protocols (described at length in Appendix B) against those used to assemble the IRRC (described nowhere). The G-Index is purportedly based on the same documents and statutory structures as is our CCG-Index, and thus if the IRRC were labeled correctly to begin with, our scatter plots would manifest trivial differences in predictive power (rather than a nearly 25-percentage-point difference in R2). Second, in a separate robustness check (see Online Appendix F), we stripped out our labels completely, training the text classifiers solely with the raw textual content of corporate charters. While both predictors degrade, the same qualitative result still holds: our classifier explains substantially more variation in the CCG-Index (48.1%) than it does in the G-Index (36.7%).

200 Moreover, any more aggressive correction to data errors—including the addition of bylaw data and expanded firm-level matching—might well cause further attenuation.

201 See generally Bebchuk et al., What Matters, supra note 11; Madanoglu & Karadag, supra note 45; Karpoff et al., supra note 11.

202 See supra notes 45–54 and accompanying text.

203 See supra notes 56–60 and accompanying text.

204 See supra note 54.
these results with more accurate data is a monumental undertaking that can only feasibly be spread across many years and several researchers.

Our Pandora’s box also renders two ominous caveats about the critical importance of data availability and the vital role of lawyers in legal empiricism. As to the former, there is significant corporate governance data out there and free for the taking, but accessing it in usable form is fraught with difficulty. Simply put, the task of finding, harvesting, and cleaning fundamental governance documents for thousands of companies over three decades is hard work. The most amenable source—the SEC’s quirky EDGAR online filing system—is cumbersome and poorly organized (especially for this task). State regulators are even less helpful, often requiring travel to a physical repository, only to face antiquated extraction technologies and exorbitant access fees. The small number of third-party commercial purveyors also charge fees, throttle downloading activity, and zealously protect their investments with litigation threats. Even for us—motivated though we were—pulling off this enterprise literally required a worldwide pandemic in the summer of 2020, which destabilized the economy and unexpectedly made available dozens of highly qualified research assistants.

It is difficult to understand why public access to public records should be so tough. The end result has been to make comprehensive governance research accessible only to the most well-heeled, well-connected, and patient—an observation that itself sounds a dissonant note about the uneven intellectual and economic playing field. Until now, the rest of us hoi polloi have been largely left to make do with the same small number of commercial resources, whose reliability has always been a little suspect, and which we have now shown to be hamstrung with inaccuracies.

The second systemic caveat from our analysis concerns the surprisingly critical role of lawyers in empirical research. Although we cannot know for sure, our results strongly suggest that whoever originally labeled the dominant extant corporate governance databases had limited (if any) legal training. Our educated guess is that much of it was coded by non-lawyers. This approach—while no doubt economical—has a significant and unfortunate shortcoming: As we have shown above, turning corporate governance texts into quantitative

205 See infra Appendix A.
206 Corporate governance documents are only one example of such hurdles. See, e.g., Pah et al., supra note 24, at 134-36 (chronicling restrictions of the PACER system over federal judicial records).
207 As noted above, commercial data providers provide two types of data: data scraped from the SEC, and independently gathered and coded data with little to no information about the gathering and coding process (the IRRC and ISS datasets). See supra Part I. The former imports whatever inaccuracies were in the SEC data onto a new platform, while layering on a theoretically easier-to-use search function. But while these search functions improve upon the SEC’s, they invariably miss important bits of information, which makes data gathered through these types of databases almost certainly incomplete.
data is a big ask. It requires nuanced domain knowledge, legal judgment, and familiarity with broader principles of law and regulation. Nonlawyers, almost by definition, possess few of these skills.

And therein lies the rub: lawyers, a professional class defined largely by a common aversion to numbers, appear long ago to have surrendered the project of corporate governance data collection to others. This was a mistake. In our opinion, the time is long past for lawyers to shed our quantitative heebeegeebees, roll up our sleeves, and reclaim the field of corporate governance research (including the data bit).

While our Pandora’s box unleashes some admittedly negative mojo, it also contains a substantial beacon of hope. The versatility and open-source accessibility of the CCG database holds considerable promise for unlocking future chapters of corporate governance discourse along multiple dimensions. For example, recent years have seen a burgeoning attention to the societal role of corporations, the role for non-shareholder constituencies in corporate governance, and the alternatives to a shareholder primacy view of corporate law. A common rejoinder to the stakeholderism movement is cost: that stakeholderism chases marginal or unproven benefits while sacrificing the returns that shareholder primacy is widely known to create. If such widely known folk wisdoms are, in fact, the vestiges of inaccurate data (as we have argued), then this cost-based rejoinder packs a considerably punier punch. More generally, when armed with our open-source resource, empirically minded corporate governance researchers will be far better equipped to explore both conventional and emergent corporate governance questions.

Even more promising is the potential for the CCG to transform fundamentally the way we “do” corporate governance research writ large. Our corpus is a critical ingredient for harnessing novel techniques from computational text analysis and machine learning, and then applying them to our understanding of how firms are organized. Already, machine learning is fueling exciting results in many legal domains—and we believe that corporate governance is an especially availing (yet still relatively untapped) target. Marshaling these new techniques to complement more traditional methodologies can lead to better empirical understanding, better theory, and

209 See sources cited supra note 16.
better policy. Our discussion above merely scratches the surface of what can be accomplished with these techniques.

Almost as important is the fact that the CCG is effectively future-proof. While the most popular corporate governance datasets today consist solely of (questionable) data labels, we provide the underlying textual inputs themselves—the very DNA of corporate governance. This raw textual corpus will empower future researchers to expand the breadth of existing labeled datasets, to correct mistakes in existing ones (including ours), and to devise novel analytic measures to take on as-yet-unknown questions. The possibilities are endless, and the potential for intellectual payoff appreciable. With the CCG database, moreover, we all will have a running start.

CONCLUSION

In this paper, we have unveiled the fruits of a multi-year effort to harvest, clean, organize, and make publicly available (for the first time) a corpus of foundational corporate governance documents spanning three decades and thousands of public companies. We have demonstrated the immediate value of this resource by combining it with carefully hand-labeled data, which we then used to uncover a disconcerting pattern of errors within the most widely used corporate governance datasets among researchers. And those inaccuracies are consequential: Even after imposing a deliberately conservative error correction protocol, we have shown that some of the most well-known metrics and empirical insights in the field stand on shaky ground.

In the light of these findings, one might reasonably ask whether we should reassess our claim—made at the onset of this article—that empirical corporate governance is a major success story in the interdisciplinary study of law.210 In our view, no such reappraisal is warranted. To the contrary: notwithstanding the appreciable infirmity of existing data that we have unearthed, as well as the corresponding state of flux it visits upon well-known folk wisdoms of the field, we view our project as ultimately standing on the shoulders of those early efforts. Those contributions permanently changed the conversation about how to understand corporate governance on a broad scale. In bringing this new resource into the public domain, our ultimate goal (and our accomplishment) is to lay the foundation for advancing the empirical corporate governance project even further. By providing a clean, accessible, primary data source going to the very structure of corporate governance, our project helps to provide a critical resource for unleashing new tools from machine learning and text analysis, taking corporate governance research into its next chapter.

210 See supra notes 7–10 and accompanying text.
And yet, much of the current chapter is still being written. Although our contribution makes a marked improvement over the status quo, we are neither so prideful nor so delusional to believe our offering cannot be improved upon. Though relatively comprehensive, our corpus does not include all companies or all conceivable measurement years. It is likely that we have missed at least some relevant texts even for those issuers we track. And, notwithstanding our collaborative judgments as legal scholars, others will quibble with our calls about how to label certain elements of the corpus. All that said, the open-source nature of the CCG transforms each of these bugs into features: we invite all corporate governance researchers, professional or academic, expert or dilettante, U.S.-based or foreign, quant or poet, to contribute to this resource, helping each other collectively to cultivate it further.211

We also anticipate that the scope of our own task will expand. As monumental as the present undertaking has proven, our efforts have tackled only select (albeit important) pieces of the corporate governance ecosystem. In ongoing work, we have already begun to take on other foundational governance domains, including bylaws, shareholder agreements, board resolutions, and the like. Each presents an opportunity to correct past mistakes, to deploy new computational tools, to push the boundaries of knowledge, and (most fundamentally) to clean corporate governance for good.

211 We have enabled interested researchers to make use of the corpus and to develop improvements to the CCG database, transforming it into a living resource. The use and adaptation of the corpus is free of charge and subject to the Creative Commons Share-Alike License (v. 4.0). See Attribution-ShareAlike 4.0 International, CREATIVE COMMONS, https://creativecommons.org/licenses/by-sa/4.0/legalcode [https://perma.cc/QPXy-TCVA].
APPENDICES

APPENDIX A: RESEARCH ASSISTANT ACKNOWLEDGEMENTS

An undertaking of this magnitude necessarily involved a phalanx of research assistants, from law school graduates, to current law students, to undergraduates. Rather than hiding their names in a starred footnote, we use this Appendix to acknowledge their contributions. We are deeply indebted to them for their dedication and service.

Senior Research Assistants

Nicole Banton
Sean Michael Blochberger
Matthew Cunningham
Deandra Fike
Channing Gatewood
Katie Gresham
Qifan Huang
Elisha Jones
Sami Kattan
Gabrielle Kiefer
Andrew Kim
Adam Mazin
Cameron Molis

Courtney Murray
Doriane S. Nguenang Tchenga
Sneha Pandya
Emily Park
Madison Roemer
Olivia Roat
Bhargav Setlur
Tom St. Henry
Avi Weiss
Gretchen Winkel
Geoffrey Xiao
Ben Zonenshayn

Research Assistants

Nathaniel Barrett
Amanda Cooper
Elif Nazli Hamutcu
Alex Inskeep
Justen Joffe
Alexa Levy
Annabelle Liu

Noam Miller
Emily Moini
Stephen Rothman
Adrien Stein
Max Swan
Agnes Tran

212 Appendices C, D, E and F are available at www.publiccompanycharters.com.
213 Senior Research assistants were JD students or recent JD graduates at top law schools.
214 Research Assistants were undergraduate students at eight top universities.
APPENDIX B: DATA COLLECTION AND CLEANING PROTOCOLS

This Appendix provides further details about our process for building the panel-structured chartering corpus for the CCG database, as well as our labeling protocols. We subdivided our description into (1) locating charters; (2) text extraction; (3) charter content labeling; and (4) state law content labeling.

Locating Charters (Task 1)

Our dataset consists of all charters available on EDGAR for all companies that fulfill at least one of the two following alternative criteria.

- The company was part of the S&P 1500 in any year between 2010 and 2019.
- The company is in the IRRC database for at least three out of the following five years of coverage in the IRRC: 1998, 2000, 2002, 2004, and 2006.\(^\text{215}\)

For any issuer satisfying at least one of these inclusion criteria, we attempted to extract the most complete chartering history available (even for years not satisfying the above criteria). Applying these criteria, we compiled a list of 2,899 companies. For all companies in our dataset, we obtained all of their current and historical charters available on EDGAR, and extracted, cleaned and organized their text.

To ensure accuracy in our collection and avoid the pitfalls of some of the current commercial data, we tackled this challenge manually, with the help of a large number of research assistants. Our protocol for locating relevant texts leveraged the requirement for companies to include information about their corporate charters with their annual 10-K filing.\(^\text{216}\) These filings usually do not contain the text of the charter themselves, but instead incorporate the charter by reference to one or more prior filings, typically filed shortly after the charter was adopted/amended. Our harvesting protocol therefore followed a sequential process: (1) locate the company’s most recent annual 10-K filing; (2) determine whether the filing reproduces a full charter restatement or merely incorporates one by reference; and (3) if no full

\(^{215}\) The ISS Legacy/IRRC database does not cover all years, but instead it observes S&P 1500 issuers periodically, in 1990, 1993, 1995, 1998, 2000, 2002, 2004, and 2006. EDGAR filings were voluntary in 1995, and they did not become compulsory until May 1996. For a history of EDGAR’s roll-out, see History of EDGAR, supra note 104. Our data collection effort required at least three years of IRRC coverage to focus on issuers that could generate a reasonably reliable panel structure, and we omitted from our search the first three years of the IRRC’s coverage (1990, 1993, 1995) since those years pre-dated the full roll-out of the SEC’s EDGAR service (our primary data collection source).

\(^{216}\) 15 U.S.C. § 78m.
restatement is found, use the exhibit references to identify the dates and locations of prior filings that contain the full text of the current charter as well as any intervening amendments.217 Once those new texts were located and added to our database, the search protocol repeated, with the next iteration starting with the 10-K filing that immediately precedes the filing date of the full restated charter located from the prior iteration. For each issuer, we looped through these sequential steps repeatedly, working backwards in time until the trail ran cold and no more responsive documents could be located on EDGAR.218 We spot-checked several companies’ charters against inventory lists from commercial providers to confirm that our manual collection efforts avoided the aforementioned coverage gaps that befall commercial providers (they substantially do).

Work on this part of the project started in October 2019; overlapping cohorts of research assistants and law students assisted us in different periods of time, but we were fortunate enough to bridge the transition periods with high-quality legacy personnel to help train the next group. We harvested most of the chartering histories for companies in the current S&P 1500 in October and November 2019. Information obtained by research assistants during this phase of the project was later verified by a different set of research assistants—all assignments that were not completed by either senior RAs or the coauthors underwent this procedure. Information for companies that were not part of the S&P 1500 at the time of the start of the project was assembled starting in the summer of 2020. In this part of the project, we assigned the majority of companies to two research assistants at the same time. In case the information provided by the research assistants was not identical, we sent the information to a third research assistant for verification.

Text Extraction (Task 2)

In a second step, we use the information obtained from Task 1 to extract the texts of charters from EDGAR. For this, we employed a custom-made python script. This process allowed us to gather charter texts for around 80% of the charters we identify in Task 1. For the remaining 20%, research assistants retrieved the text manually.

217 The recorded information also included helpful document text tags, which allowed us to develop a customized computer program to extract the charter texts. In cases where this automated text extraction failed, we extracted the text manually.

218 As a result, our strategy materially differs from (and is more robust than) the approach apparently used by most commercial services. See supra Part I.
Charter Content Labeling (Task 3)

The third step involved labeling the contents of charters according to a prespecified coding rubric. Our rubric contains a set of 28 questions about the presence of specific provisions in a charter. Ten questions deal with issues regarding the rights associated with different classes of stock and the power of the board to shift the balance of power among shareholders, in particular in the context of takeover defenses. Another ten questions concern issues of corporate governance (such as special meetings and written consents). A final set of questions concerns the liability of managers and corporate officers. For each of these questions, we asked coders to provide us not just with a binary response if the provision was present, but also with relevant text if they are able to locate a provision in the charter.

We implemented this rubric in an Excel spreadsheet that allowed us to code the contents of charters for the same company on one sheet. We also made available to coders “redline” documents that show the changes between different versions of (full restatements of) corporate charters. Our research assistant team convened once per week via Zoom to discuss the labeling process and to tackle any issues that occurred during the previous week. We also set up an online forum where coders had the opportunity to ask questions on an ongoing basis, and that was consistently monitored by one of the senior RAs.

Initially, we assigned the same company to multiple coders in order to track agreement rates and identify the need for additional training. After that, we assigned companies to two research assistants at the same time. Senior research assistants reviewed all questions for which the coders’ answers diverged. During this phase of the project, we also tracked rates of agreements between coders. After some weeks, we ceased double-assigning companies to JD research assistants. For other research assistants whose coding appeared particularly reliable, we also incrementally reduced the amount of overlap with other coders. However, we made sure that at least 33% of the companies coded by undergrad coders were double-assigned. Overall, we labeled the contents of all the charters for 1,573 issuers in our dataset. The companies included in Task 3 were chosen as follows. Because one of the goals of our manual coding was to replicate studies relying on the IRRC database, we deviated from random assignment in one important way: whenever possible, we gave priority to companies that were included in the IRRC database.

State Law Content Labeling (Task 4)

In a separate effort, we trained business law students to label a panel data set of laws from all fifty states and the District of Columbia regarding sixteen
governance-related issues.219 (Several of these dimensions appear to have been wrongly neglected in notable databases like the IRRC.)

For state law, labelers tabulated the existence and substantive directionality of the provision (e.g., “required” or “not required/silent”), whether it was a default or immutable rule, the lowest echelon of corporate governance document capable of contracting out of the rule (if it was default), and limitations/constraints placed on available choices for issuers opting out (again if it was a default). These criteria were then employed to implement the “conservative” approach to identifying and correcting errors. Our state-level panel data also include labels for four additional state law provisions that we extracted from preexisting assorted sources in the literature.220 Although we did not label these \textit{de novo}, when the designations in the literature conflicted with one another we did primary research to reconcile the differences.

219 For additional details, see Online Appendices.