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ABSTRACT 

Data from 25 large U.S. cities is assembled to estimate the impact of the onset of the COVID-

19 pandemic on crime.  There is a widespread immediate drop in both criminal incidents 

and arrests most heavily pronounced among drug crimes, theft, residential burglaries, and 

most violent crimes.  The decline appears to precede stay-at-home orders, and arrests 

follow a similar pattern as reports.   There is no decline in homicides and shootings, and an 

increase in non-residential burglary and car theft in most cities, suggesting that criminal 

activity was displaced to locations with fewer people.  Pittsburgh, New York City, San 

Francisco, Philadelphia, Washington DC and Chicago each saw overall crime drops of at 

least 35%.   Evidence from police-initiated reports and geographic variation in crime 

change suggests that most of the observed changes are not due to changes in crime 

reporting. 
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I. INTRODUCTION 
 

The Coronavirus pandemic that began in China in December, 2019 and in the U.S. in 

January, 2020 (Holshue et al. 2020) caused the biggest voluntary impact on the economy in 

U.S. history.  It also changed the nature of policing, criminal opportunities, and criminal 

penalties.  This paper explores some of the initial impact on criminal activity of the 

pandemic and responses to it.  The pandemic impacted all aspects of society, a number of 

which have caused changes in observed levels of crime.  As concern about the pandemic 

rose, individuals stopped their regular activities and stayed home (Figure A1).   

Police departments modified policies, including de-emphasizing particular types of crimes, 

like drugs (Sisak, Bleiberg, and Dazio 2020), and eliminating arrests for some crimes 

(Melamed and Newall 2020).  Jails and prisons have seen some of the most severe 

outbreaks and as such a number have released inmates early (Surprenant 2020; Williams, 

Weiser, and Rashbaum 2020).  Courts shut down and deferred cases (Melamed and Newall 

2020) which may result in fewer prosecutions.  There was also massive job loss as 

businesses across the country closed (Chetty et al. 2020).  Together, this has resulted in a 

change in the opportunities for crime, probability of observation, capture, arrest, 

prosecution and penalty. 

In addition to understanding an important impact of the pandemic, this work may be 

valuable to individuals and police departments as the pandemic and responses to it 

continue.   Police departments making resource allocation decisions should pay attention to 

the pandemic-related changes to the quantity and distribution of crime.  Individuals may 

also want to update their beliefs about crime in addition to other changes as they make 

decisions about what activities to engage in during a pandemic.  But even beyond the 

current context, this work may help shed light on how substantial changes in mobility and 

other inputs impact crime. 

Observed levels of crime were indeed sharply impacted, and I summarize the main results 

here.  Crime reports and arrests fell significantly in almost every city examined in response 

to the onset of the pandemic.  Like the economic impact, the crime impact preceded stay-at-
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home (SAH) orders, as individuals voluntarily changed their behavior in light of the 

disease.  The cities with the greatest declines were Pittsburgh, New York City, San 

Francisco, Philadelphia, Washington DC, and Chicago, which each had declines of at least 

35% for overall reported crime rates.  There was no significant change in Cincinnati or 

Seattle. 

Drops in drug crimes were by far the greatest, with many cities showing massive declines 

of over 65%.  There were also substantial declines in residential burglaries, theft, and 

violent crime except for homicides and shootings.  In general, changes in arrests tended to 

parallel changes in criminal incidents.  There was an increase in non-residential burglary as 

individuals spent more time at home and other buildings were left less occupied.  The 

results for car theft and theft from cars varied substantially by city. 

A. Literature 
The current research sits within the long and extensive empirical literature on the 

economics of crime, a full review of which is well beyond this paper.  Recent reviews by 

(Doleac 2020) on desistance from crime, and (Chalfin and McCrary 2017) on deterrence 

point to some modern empirical work on these topics.  Although several years older, (Levitt 

and Miles 2004) is an excellent, broad survey of the empirical economics of crime literature 

to that point. 

Not surprisingly, the literature on the impact of the COVID-19 pandemic on crime is limited 

given the brief time that has passed since the pandemic began.  In a recent working paper, 

McDonald and Balkin (2020) simply report changes in crime rates in four major U.S. cities 

relative to the prior year without any standard errors.   Other papers focus on specific 

jurisdictions, including Chicago (Campedelli et al. 2020), Los Angeles (Campedelli, Aziani, 

and Favarin 2020)  Queensland, Australia (Payne and Morgan 2020a, 2020b), and 

Lancashire, UK (Halford et al. 2020).  These analyses report mixed results from little 

change in Queensland to substantial declines in crime in Los Angeles.  In (Halford et al. 

2020) the authors focus on a single jurisdiction in the UK and find substantial declines 

across many different crime types.  They compute a “mobility elasticity of crime” which 

covers a substantial range of values.  All of their findings are directionally the same as those 

in this paper, except for non-residential burglary.  Halford et al find a decrease in this crime 
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during pandemic onset, while this paper finds a substantial increase as individuals spend 

more time at home.  This difference may due to variation in SAH restrictions or to greater 

intermixing of residential and non-residential buildings in the UK jurisdiction under study. 

The closest research to the current paper (Ashby 2020) investigates time series variation 

in crime in 16 US cities in the first two months of the pandemic relative to forecasts based 

on historical data.  Ashby finds a handful of city-weeks that diverge significantly from 

historical averages but that most crime changes were not statistically significant.  The 

current paper finds substantially more significant deviation in crime rates, and the 

difference appears to be at least partly attributable to greater data availability and a 

different level of aggregation.   

Two recent papers focus specifically on the impact of the pandemic onset on domestic 

violence.   Examining calls for service from 14 municipalities, (Leslie and Wilson 2020) find 

an increase of 7.5% in the first several weeks after the onset of the pandemic, although they 

are not able to distinguish real crime changes from changes in reporting patterns.  Another 

paper focuses just on domestic violence incident reports in Dallas and finds weak evidence 

for an increase (Piquero et al. 2020). 

There is little evidence on the impact of prior pandemics on crime.  But a report by the 

Chicago Department of Health (Robertson 1919) indicates a 38% decline in crime rates in 

Chicago from 1917 to the same 3 week period in 1918 during which there was a lockdown.   

This is astonishingly similar to the 35% overall decline in crime in Chicago in the first 4 

weeks of the 2020 pandemic, relative to the same period for the prior 5 years.  The author 

of the 1919 report concludes that, “so far as vicious conduct and immorality are concerned 

it would seem that ‘to keep the home fires burning’ and to stay off the streets late at night 

lessen the number of misdemeanors and misconduct of every kind.”  I might state things a 

bit differently, but the same link between presence on the street and crime appears to hold 

today. 

The rest of the paper proceeds as follows.  Section II contains additional background on 

crime and the pandemic, and section III introduces the data.  The main analysis is 

presented in Section IV, followed by a discussion in Section V.  Section VI concludes. 
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II. Background 
While a formal model is beyond the scope of this paper, here I briefly present some 

heuristic predictions for how reported crime may be impacted by the pandemic onset, as 

well as additional background.1   The crime rate is a function of available opportunities and 

expected penalties.  Reported crime incidents depend not just on the true crime rate, but 

also the reporting rate (the share of crimes reported).  For now I assume no change in the 

reporting rate, but return to this crucial assumption in Section V below.   

Crimes vary in their primary source of detection – police, public, or victim.  For most crime 

types other than drugs, public or victim reports are the main source of detection.  Figure A1 

provides evidence of a substantial and widespread decline in mobility at the onset of the 

pandemic.  Thus when mobility in a location declines, the probability of observation by the 

public drops, which reduces the expected penalty.  However, the lack of street traffic could 

also increase likelihood of detection by police, as individuals on the street are more 

noticeable.   

There is evidence that police presence and enforcement of certain laws decreased during 

the pandemic onset (Elinson and Chapman 2020; Melamed and Newall 2020), which would 

tend to increase crime rates due to the decreased expected penalty.  Prosecutors and courts 

have been impacted by the pandemic; it is too early for substantial data to be available, but 

the most reasonable expectation is that the probability of prosecution and sentence 

conditional on conviction will fall.  Jails and prisons have seen some of the highest infection 

rates of SARS-CoV-2.  The likelihood of illness if imprisoned and therefore the cost of 

imprisonment has increased after the pandemic.  But since many offenses result in no 

incarceration and all of the other components of the expected cost of prison likely decline, I 

assume that the change in the expected penalty is negative or zero.   

Thus, one should expect to see an increase in property crimes like car theft, theft from 

vehicles, and non-residential burglaries because of the decline in expected penalty due to a 

 
1 In the spirit of (Becker 1968), (Ehrlich 1981), (Balkin and McDonald 1981) and (Fu and Wolpin 2018). 
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drop in mobility.  The one location where individuals were spending more time is at home, 

so one should expect a decrease in residential burglaries.2   

In addition to changes in individual behavior and criminal justice routines, unemployment 

jumped dramatically (Figure A1) during the pandemic onset (Chetty et al. 2020).  The 

modern economic theory of crime, beginning with Becker (Becker 1968) posits that crime 

rates will be a function of expected gains and penalties from crime, which will naturally be 

affected by the outside option for income.  For many individuals, this is regular 

employment and thus crime rates should be impacted by the unemployment rate.  While 

there are some good empirical studies (Raphael and Winter-Ebmer 2001; Lin 2008) that 

support this theory, there are not as many as one might hope.  Theory predicts the crime-

employment link to be strongest for property crimes, and this is what the empirical studies 

show, with no real evidence of a link between violent crime and unemployment rates.   

Absent intervention, one might expect the change in economic climate to lead to an 

increase in crime, at least for property crime.  But in fact there was tremendous 

governmental response, first in the form of the Families First Coronavirus Response Act 

(Match 18. 2020) and then the Coronavirus Aid, Relief, and Economic Security Act (March 

27, 2020), the latter of which cost over $2 trillion.  The act included hundreds of billions of 

dollars for unemployment insurance, direct payments to individuals, as well as aid to 

businesses (WSJ 2020).  So while the economic impact of the pandemic onset was 

enormous, the massive government response suggest that this is unlikely to have had a 

substantial impact on crime.  Nevertheless, the unemployment rate is included in some 

specifications (Section V). 

There is considerable variation in the nature of violent crimes, from those with greater 

financial incentive, like robbery, to those that are often associated with alcohol or drug use, 

like assault.  Unlike property crime, there is always a victim of violent crime who may 

report it (other than homicide) although reporting rates may still vary substantially.  For 

assault, rape, and robbery, the lower level of interaction with individuals outside the home 

 
2 I assume that the cost of violating stay-at-home orders is small for most crime types relative to other 
considerations. 
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should decrease opportunities and thus decrease the crime rate.  The change in violent 

crimes will naturally be strongest in areas with the largest change in potential victims and 

perpetrators, as around now-closed bars (Section V). 

A different pattern should be expected for homicide due to the fact that in large cities an 

appreciable share is related to drugs or gangs (National Gang Center 2020) and unlikely to 

be impacted by SAH orders and overall mobility.  Individuals likely to be involved in a 

homicide may not be deterred by SAH orders or the prospect of disease.  The same pattern 

will likely hold for shootings – that is, no substantial impact of the pandemic.  Domestic 

violence is in this context the opposite of assault.  With much more time spent at home, one 

might expect a large increase in domestic violence.  However, domestic violence has a 

notoriously low reporting rate, and one that is likely to be strongly impacted by SAH 

orders.  These reports are probably among the least reliable of the data collected. 

Drug crimes differ from property and violent crimes in that police are the main source of 

drug crime detection as opposed to victims or the public.  Given this fact, policing priorities 

should have the dominant impact on reported drug crime rates and the true rate may 

diverge most from the reported rate.   

III. DATA 
The goal of this paper is to rapidly collect current data from large cities to estimate the 

impact of the pandemic onset on crime.  This would not have been possible a decade ago, 

prior to the widespread success of the Open Data movement, which has made up-to-date 

crime statistics more available than ever before (US Gov 2014).  As such not only is it 

possible to rapidly obtain data to inform this study of a very recent phenomenon, but I have 

also aggregated it on a new website that is available to researchers and the public: 

https://citycrimestats.com.  Table A1 summarizes the data types obtained by city, which 

includes 25 of the largest cities in the U.S.  Cities differ in the data they make available and 

therefore the set of cities analyzed in each figure or regression varies.  Data definitions, 

sources and cleaning procedure are reported in Appendix B. 

Table A2 presents summary statistics of crime incident rates per 100,000 residents before 

and after SAH orders in a city.  Almost all crime categories experience substantial crime 

https://citycrimestats.com/
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drops.  A few crimes, like homicide and aggravated assault, show an increase after SAH 

orders but as will be seen in the next section, these mostly reflect seasonal trends.  Some 

cities make information on shootings available; almost all of this data was obtained in 

response to email inquiries and calls.   

Data on COVID-19 prevalence is now pervasive.   The source used in this paper is The New 

York Times.  Data on individual movement (mobility data) comes from Google COVID-19 

Community Mobility Reports.  This data is generated from individuals who have turned on 

Location History for their Google Account and use a mobile device.  It is available at the 

county level for 6 types of location: Grocery and pharmacy, parks, transit stations, retail 

and recreation, residential and workplaces.  Several measures of the timing of responses to 

the pandemic are obtained from government websites or local newspapers.  These include 

orders of: social distancing, closure of non-essential services, stay-at-home, and end of 

stay-at-home.  In most cities social distancing orders were issued several days before SAH 

orders. 

 

IV. MAIN RESULTS 
 

A. Magnitude of Crime Drop 

The change in crime from the pandemic onset was large and sharp enough that the impact 

is clear from the time series.  Figure 1 shows crime rates for all cities by broad crime 

category from 7 weeks prior to 7 weeks after SAH orders, for 2020 (black) and 2015-2019 

(grey).   The vertical line indicates when the SAH order went into place.  The crime drop 

actually begins 10-14 days prior to the SAH orders, and is almost coincident with mobility 

drop.   This is likely due to the fact that there was considerable media coverage prior to 

SAH orders as well as some other less severe orders.3 It is clear from this figure that 

declines in all types of crime were substantial.   

 
3 The SAH order date is used for clarity and consistency across cities; the results do not change substantially when 
using measures of mobility decline to define After. 

https://www.google.com/covid19/mobility/
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To quantify the magnitude of the crime decline and understand how it varies by crime type 

and location, I run a series of difference-in-difference regressions where the comparison 

group for each city is itself in years prior to 2020:   

ln(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽1𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 ∗ 𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ (γ𝑘𝑘𝑌𝑌𝑐𝑐𝑇𝑇𝑐𝑐𝑘𝑘)2020
𝑘𝑘=2015 + 𝜃𝜃𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (1) 

Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the number of crime incidents in city i at week t, 𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 is 1 if the year is 

2020 and 0 otherwise,  𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is 1 beginning on the calendar week when the stay-at-home 

order went into effect in city i regardless of year,  𝑌𝑌𝑐𝑐𝑇𝑇𝑐𝑐𝑘𝑘 is a year dummy, 𝜃𝜃𝑖𝑖  is a vector of 

dummies to control for week-of-year fixed effects.  City fixed effects are included as 𝜇𝜇𝑖𝑖 and 

standard errors are computed using wild bootstrap. Data is aggregated to the week level, 

since in some cities more severe crimes are zero on many days.4  The data is a balanced 

panel, and for each city uses the same weeks of the year, beginning 7 weeks before the SAH 

order and ending 4 weeks after, for the years 2015 – 2020. 

Table 1 reports coefficients from the difference-in-difference specification in Equation 1 by 

crime category.  Standard errors computed by wild bootstrap are in parentheses.  Reported 

crime fell rapidly, broadly and substantially, 23.3% overall.  Since total crime can hide 

substantial variation it is instructive to consider the changes in crime, first in broad 

categories and then more narrowly.  Property crime dropped 19.3% relative to the same 

period over the past 5 years, as did violent crime.  Drug crimes saw the biggest decline, 

with a drop of 65% - this regression includes only the 12 cities that provided drug data.  In 

each broad category except drugs, the coefficient on After is positive, statistically significant 

and of large magnitude.  This reflects the substantial seasonality to crime.  The number of 

cities varies somewhat by crime category due to differences in reporting, and is reported in 

Table 1.  In Section V I discuss a number of robustness checks, including modifying the 

weeks included, changing the comparison years, and including additional controls – none 

change the results in a meaningful way. 

 
4 The use of daily data for more frequent crimes yields similar results without much improved standard errors, 
likely due to substantial noise in precise timing of reporting.  For consistency, the weekly analysis is used 
throughout. 
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In order to gain greater insight into the timing of the crime change, I estimate an event study 

specification where as before time zero is when SAH are enacted in each city:  

 ln(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) = 𝛼𝛼 + ∑ �𝛽𝛽1𝑗𝑗𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 ∗𝑊𝑊𝑐𝑐𝑐𝑐𝑊𝑊𝑗𝑗�7
𝑗𝑗=−8 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + ∑ (γ𝑘𝑘𝑌𝑌𝑐𝑐𝑇𝑇𝑐𝑐𝑘𝑘) + 𝜃𝜃𝑖𝑖2020

𝑘𝑘=2015 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (2) 

Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the number of crime incidents in city i at week t, 𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 is 1 if the year is 

2020 and 0 otherwise, Weekj is a dummy for the number of weeks which time t is after the 

calendar date when the stay-at-home order went into effect in city i regardless of year, 

𝑌𝑌𝑐𝑐𝑇𝑇𝑐𝑐𝑘𝑘 is a year dummy, 𝜃𝜃𝑖𝑖  is a vector of dummies to control for week-of-year fixed effects.  

City fixed effects are included as 𝜇𝜇𝑖𝑖 and standard errors are computed using wild bootstrap. 

The results are presented visually in Figure 2 for overall crime rate and in Figure A2 by 

specific crime type.  The event study results are consistent with the time series data in 

Figure 1 and the difference-in-difference results in Table 1.  A small crime decline begins 

two weeks prior to the SAH orders and in earnest (almost 20% below baseline) one week 

before SAH orders.  Crime rates then remain low for the 7 weeks following the SAH orders 

that is the extent of the timespan studied5.  Figure A2 reveals a similar pattern for specific 

crime categories.  In all cases, the timing of any changes is similar to that for overall crime, 

and the direction and magnitude consistent with that estimated in the difference-in-

difference specification. 

Property Crime 

Most property crimes fell substantially with the onset of the pandemic, with two major 

exceptions, non-residential burglary and car theft (Table 1).  The drop in residential 

burglary by 23.5% is more than offset by the 37.8% rise in non-residential burglary.  These 

results are well explained by the fact that individuals were largely confined to their homes, 

providing a deterrent to home burglaries, but resulting in a much lower level of detection 

for non-residential buildings.  Theft also dropped substantially by 28.2%, while theft from 

vehicles declined by 20.3%. 

 
5 This time period was chosen in order to restrict focus to the pandemic onset and responses to it as cities began 
lifting SAH orders after this period. 
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Results for car theft are mixed, with some cities showing an enormous increase, like 

Philadelphia.  Other cities had little change, like Cincinnati and some even saw a decline, 

like Baltimore.  The net effect in the cities examined is a positive point estimate but not 

statistically significant at conventional thresholds.   

Violent Crime 

Every violent crime category saw a decline in reported crime except for homicide, as well 

as shootings6.  Robbery and aggravated assault both had substantial levels of decline, at 

20.2% and 15.9%.  But the drop for simple assault was far greater, at 33.3%.  The disparity 

between simple and aggravated assault is likely due to a combination of changes in 

reporting and availability of victims.  There were almost certainly fewer low-level public 

altercations, especially associated with alcohol, as many public establishments were closed.  

This is explored further in Section V.  

The difference between other categories of violent crime and homicides and shootings 

(Figure 3) is striking.  A few observations are worth noting here.  Shootings in 2020 were 

already elevated relative to prior years, even before the pandemic onset.  A large share of 

murders (National Gang Center 2020) are associated with gangs, which may be less likely 

to be deterred by SAH orders during a pandemic.  Even homicides and shootings not 

associated with gangs are likely committed by individuals with outlier risk preferences, 

which makes them less responsive to the pandemic.  While the same may be true of 

perpetrators of other violent crimes, victims of those crimes may be more responsive to the 

pandemic and thus less available to be victimized.   

The decline in domestic violence reports (17.3%) and the substantial drop (38.6%) in 

reported rapes likely overstate true changes in crime.  For domestic violence (DV), the data 

is limited to four cities (Austin, Chicago, Nashville, and San Francisco) and is almost 

certainly a lower bound on the true level.7  Some victims were staying in the same building 

 
6 Shootings are not a separate crime in the Uniform Crime Reports, but are reported by many cities. 
7 Some share of domestic violence is reported as simple or aggravated assault, although familial violence likely 
accounts for roughly 15% of assaults (Durose et al. 2005).  More detailed data that is not yet available could allow 
for a better understanding of whether the familial violence share of assaults increased as people spent more time 
at home. 
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with abusers and likely were unable to report.  As schools closed, this important source of 

reports also disappeared.  See (Leslie and Wilson 2020) for evidence that DV likely 

increased.  For rape there may be an undercount for similar reasons, but possibly not to the 

same extent.   

V. DISCUSSION 

A. Crime Drop vs Observed Crime Drop 
 

A crucial question regarding the interpretation of the findings in this paper and any using 

crime incident data is: to what extent do changes in observed crime reflect changes in the 

real level of crime, rather than changes in reporting of crime?  In this section I attempt to 

shed some light on the question and present suggestive evidence that much of the crime 

change is not simply a reporting artifact.   

Crimes may be reported by police or any other individual.  One potential indicator of 

reporting rate changes is changes in the share of reports by the police.  The source of crime 

incident reports is only available from two cities in the data set, Dallas and Nashville and 

reported in Table A3.   The vast majority of crimes in both cities are reported by individuals 

other than police, with one main exception, drug crimes.   For drug crimes about 2/3 of 

reports are due to police.  In Nashville, all crime types saw a modest increase in the share 

reported by police.  This suggests that the decline in overall crime reports was likely not 

predominately due to reporting changes, or that reporting dropped in very similar 

proportions by police and individuals.  This seems unlikely given the overall mobility 

decline of about 50% but little evidence that policing dropped by anything near that 

amount.  It is possible to bound the contribution of reporting changes to observed crime 

rate change under the assumption that all of the increase in police share of reports is due to 

missing reports from non-police.  In Nashville those bounds are 10.1 percentage points for 

violent crimes, 6.3 pp for property and 7.0 for drugs.  This would mean the estimated 

decline in crime is substantially overstated, but nevertheless still large. 

The evidence from Dallas is similar for drug crimes, with a modest increase in the share 

due to police.  However, violent crime share due to police increased substantially, while the 
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opposite was true for property crime.   One way to interpret the overall changes in Dallas is 

that police accounted for a greater share of reports overall as the pandemic reduced the 

number of other observers.  The differences between violent and property crime relative 

shares likely point to an emphasis on violent crimes and de-emphasis on property crimes 

as the pandemic began.   

Another approach to examining the impact of reporting changes is based on geographic 

variation.  As lockdown orders were put into place across the country, bars and restaurants 

were some of the establishments forced to close or to provide takeout service only.   Prior 

research shows that crime is localized around bars and also impacted by the closure of bars 

or similar establishments at the very local level (Klick and MacDonald 2020; Chang and 

Jacobson 2017).  Thus it is natural to examine changes in crime around bars when SAH go 

into effect to gain insight into reporting rates.  

If changes in crime reports reflect an overall reporting decline, then there should be a 

consistent drop in crime that is independent of distance from bars.  If declines reflect a real 

change, one should expect a sharp decline in crimes most associated with large gatherings 

of individuals around bars, often at night and inebriated: simple assaults, theft and robbery.  

This decline should drop off fairly rapidly with distance from bars.  Other crimes should see 

a negligible impact of bar closures and shouldn’t exhibit a distance dependence. 

To assess this possibility, I analyze data from Philadelphia that includes crime location 

along with that of bars and restaurants.  I compute the distance to the nearest bar or 

restaurant for each crime incident and then count the number of incidents by time period 

and distance ranges (Figure 4).  For each distance range indicated on the x-axis, the crime 

change is simply the ratio of crime incidents in that area 7 weeks after the stay-at-home 

order to 4 weeks before the order.  The distance range is from the next largest increment to 

the one plotted (e.g. 200 includes incidents from 100 to 200 meters from the nearest 

establishment). 

Simple assaults, drug crimes and robbery all dropped to between 30 and 40 percent of pre-

pandemic levels within 25 meters of the establishments.  But the relative patterns in crime 

changes diverge when moving away from the establishment.  The drop in simple assault, 
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theft and robbery rates decreases with distance from bars and restaurants.  This is to be 

expected – when these locations close, there are fewer people to get into fights or to be 

robbed nearby, but this falls off rapidly with distance from the establishment.   

Drug crimes exhibit a completely different pattern, independent of distance from the bar or 

restaurant.  If the decline with distance was simply due to changes in reporting due to 

decline in people, one would expect to see a similar drop off with distance for drug crimes.  

But in fact the pattern is exactly what would be expected with reporting rates that don’t 

change substantially, since drug crimes aren’t strongly associated with bars or restaurants.   

The prior literature (Chang and Jacobson 2017) and Figure 4 suggest that crime varies in a 

nonlinear way with distance from similar establishments.  Thus in order to quantify the 

variation in crime drop-off with distance from establishments, I run non-parametric 

regressions of the crime change around SAH on distance (Table A4) using the following 

specification: 

ln(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽1𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 ∗ 𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖 ∗ 𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖 + 𝛽𝛽2𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 ∗ 𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖 +  𝛽𝛽3𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇 ∗ 𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖 +

                   𝛽𝛽4𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑐𝑐𝑖𝑖 ∗ 𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖 + 𝛽𝛽5𝑅𝑅𝑐𝑐𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑖𝑖 + ∑ (γ𝑘𝑘𝑌𝑌𝑐𝑐𝑇𝑇𝑐𝑐𝑘𝑘)2020
𝑘𝑘=2015 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖     (3) 

Where variables are defined as in equations 1 and 2 and Regioni is a set of regions 0-100m, 

100-200m, 200-300m and >300m from the nearest bar/restaurant.  The regression results 

show a statistically significant increase in relative crime rates with distance for theft and 

robbery, but nothing significant for simple assault or drugs.  Based on Figure 4, it is likely 

that the result for simple assault is because most of the variation is within a small distance 

from the establishments, that was not picked up in the specification.  While none of what is 

presented here is conclusive, along with the evidence above this suggests that much of the 

crime change at the pandemic onset is not due to reporting changes. 

B. Robustness Checks and Heterogeneity 
Criminal incidents have been used as the measure of crime so far in this paper.   While the 

above discussion provides evidence that these are a true reflection of crime changes, it is 

also useful to use an alternate measure when possible.  For a subset of 9 cities, an 

additional measure is available – arrests.  Results from regressions using arrests (Table A5) 

are broadly similar but show an even greater decline than incidents.   Arrests in these cities 
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fell by 45.6% overall, substantially greater than incidents.   Drug arrests fell a massive 77% 

and property arrests by 34.8%.  Violent crime arrests had the smallest decline, at 16.8%, 

slightly lower than the drop in incidents.   Together this evidence suggests that police 

resources were focused less on arrests for most crime types, except for violent.  This is 

consistent with stated temporary revisions to police department policies as the pandemic 

began (Mallin and Barr 2020).   

The results presented in the paper are robust to several other alternative specifications 

presented in Table A6.  The main analysis is performed using a period of 7 weeks before 

SAH orders and 4 weeks after.  The before period was chosen to establish a baseline that 

balances more observations without getting far before the pandemic.  The after period was 

chosen in order to cleanly estimate the full impact of SAH as some cities began opening up 

after 5 weeks.  But the results are quite robust to changing both the before and after 

window, as shown in columns 1-7 of Table A6.  In all cases the estimated crime decline is 

within a few percentage points of the base specification (columns 1 and 5).     

In order to establish a less noisy overall crime rate, the main specifications use 5 years of 

prior data (2015-2019) to compare to 2020.  Some readers may be interested in a single 

year comparison to 2019 as better capturing current crime rates – this is reported in 

Column 8 of Table A6.  Changing the comparison time to 2019 reduces the magnitude of the 

estimated pandemic impact on crime by less than 1 percentage point.  In addition to the 

direct impact on the criminal justice system, the pandemic had a massive effect on the 

economy, with ballooning unemployment rates (Figure A1).  Column 9 of Table A6 presents 

the results of the main specification with unemployment added as a control variable.  The 

estimated impact of the pandemic is under 4 percentage points lower when including this 

control, no statistically significant difference from the main specification. 

Another concern may be that extreme outlier cities could drive some of the results.  This is 

not very likely given the inclusion of city fixed effects, but for additional confidence all of 

the main regressions were run leaving out one city at a time.  None of these estimates are 

statistically significantly different from the main specification.  Finally, a placebo test is run, 

where the day of SAH order is randomly chosen from a 6-month window beginning on 
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February 19, 2019 – roughly a year before the first cases began making news in the U.S.  In 

these simulations, the coefficients are all of magnitude several times smaller than the 

magnitude estimated in the real regressions, and with no statistically significant difference 

from zero. 

One noticeable characteristic about the impact of the pandemic onset on crime is just how 

widespread it was.  Almost all cities examined had a crime rate drop of at least 15% in at 

least one broad category (violent, property or drugs) (Table A7).  Six cities - Pittsburgh, 

New York City, San Francisco, Philadelphia, Washington DC and Chicago – saw overall 

drops in crime of over 35%.  Observable characteristics examined do not explain cross-city 

variation in crime drop.  None of the following were statistically significant explanatory 

variables in regressions with city crime drop as the outcome: median household income, 

police officers as a proportion of the population, proportion of African Americans, location 

within the US, share Republican, and various measures of crime.   

 

VI. CONCLUSION 
The onset of the global pandemic in the U.S. in the Spring of 2020 had a massive impact on 

almost all types of crime.  It led to a decline in both violent and property crime by 19% 

overall.  The effect on drug crimes was substantially larger – about 65% on average in the 

cities examined.  The decline in crime began prior to SAH orders and coincided closely in 

time to the substantial drop in mobility. 

Some of the specific categories with the largest declines were theft (28%), simple assault 

(33%), and rape (39%).  Not all crime rates fell – in particular as people spent more time at 

home, commercial burglaries rose by 38% and car thefts in some cities rose dramatically.  

Some types of serious violent crime seemed unaffected by the pandemic onset, notably 

homicide and shootings.  Arrests followed similar, although even more pronounced 

patterns as crime reports. 

While most cities experienced a significant drop in crime, there was substantial variation 

across cities.  The following cities saw overall crime rates drop by at least 35%: Pittsburgh, 

New York City, San Francisco, Philadelphia, Washington DC and Chicago. 
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Given the magnitude, breadth and rapidity of these changes in crime, it is important to 

attempt to understand whether much of it is due to substantial changes in reporting rates.  

Two separate strands of evidence suggest that much of the crime change is real.  First, 

there is not a large change in the share of crime reported by police versus the public, in the 

two cities that report this data.  Second, in Philadelphia there was evidence of a drop in 

crime that varied as a function of distance from closed bars for simple assaults, robberies, 

and thefts, but not for drug crimes that were unlikely to be impacted.  This contrast 

suggests that a large portion of the change in reports reflects a real change in crime. 

At this writing, the pandemic is still raging in the US and likely to continue for months if not 

years.  As such, political leaders, law enforcement, as well as individuals will need to 

account for the changed circumstances as they make decisions for some time to come.  The 

hope is that these initial findings about the pandemic impact on crime will help inform 

those decisions.   In addition, these unique events may help us better understand the 

factors that impact crime in normal times as well.  
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Figures 
Figure 1 

 
    a)               b) 

 
         c)                    d) 
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Note: Each panel combines data from 23 cities (16 for drugs) to show a time series of crime incidents per 100,000 residents from 7 weeks before to 7 weeks after the 
stay-at-home order issued in a city.  In order to account for varied timing in pandemic onset, each line combines the data such that time zero (red vertical line) is when 
the stay-at-home order was issued in a city.  The black line is 2020 data; the grey lines show the same time period but for years 2015 – 2019.  Panel a reports overall 
crime rate, panel b reports violent crime, panel c reports drug crime, and panel d reports property crime. Data source: city police departments. 
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Figure 2 

 
Note: Coefficients from event study specification (equation 2) are reported for the period from 8 weeks before to 7 weeks after stay-at-home order in a city.  Baseline is 8 
weeks prior to stay-at-home order.  Data from 19 cities, obtained directly from police departments.   
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Figure 3 

  
    a)               b) 

 
        c) 

Note: Each panel combines data from 23 cities (15 for shootings) to show a time series of violent crime incidents per 100,000 residents from 7 weeks before to 7 weeks 
after the stay-at-home order issued in a city.  In order to account for varied timing in pandemic onset, each line combines the data such that time zero (red vertical line) 
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is when the stay-at-home order was issued in a city.  The black line is 2020 data; the grey lines show the same time period but for years 2015 – 2019.  Panel a reports 
homicide rate, panel b reports shooting incidents, and panel c reports robbery. Data source: city police departments 
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Figure 4 
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Note: The distance to the nearest bar or restaurant is computed for each crime incident.  Incidents are summed by time period and distance ranges.  For each distance 
range indicated on the x-axis, the crime change is simply the ratio of crime incidents in that area 7 weeks after the stay-at-home order to 4 weeks before the order.  The 
distance range is from the next largest increment to the one plotted (e.g. 200 includes incidents from 100 to 200 meters from the nearest establishment).  The type of 
crime is indicated by the line style, color and market type. Data source: City of Philadelphia. 
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Table 1: Impact of Pandemic Onset on Crime 
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Appendix A. Additional Figures and Tables 

Figure A1 
 

 
Note: Three time series are reported relative to the day the stay-at-home order is issued, for 25 cities.   The 
left axis indicates the scale for new COVID-19 diagnoses, shown in the black solid line.  The blue, dashed line 
indicates change in mobility relative to baseline, established Jan 3 – Feb 6, 2020 (right axis).  The mobility 
measure is an average of these Google Mobility categories: Retail/Recreation, Transit, Workplace and 
Residential.  Change in employment relative to baseline (Jan 4-31, 2020) uses the right axis scale and 
reported in the red dotted line.  Data sources:  New York Times (COVID-19 diagnoses), Google Mobility 
Report (mobility), Track the Recovery (employment). 
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Figure A2 – Event Study by Crime Type 
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Figure A2 – Panel B 

 

Note: Coefficients from event study specification (equation 2) for crime type indicated are reported for the period 
from 8 weeks before to 7 weeks after stay at home order in a city.  Baseline is 8 weeks prior to stay at home order.  
Data from 19 cities, obtained directly from police departments.   
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Table A1: Data Availability by City  

City Incidents Arrests 
Domestic 
Violence Shootings 

Austin 2015-May, 2020 2015-May, 2020 2015-May, 2020 - 
Baltimore 2015-May, 2020 2015-May, 2020 - 2015-May, 2020 
Boston Jun, 2015-May, 2020 - - Jun, 2015-May, 2020 
Chicago 2015-May, 2020 2015-May, 2020 2015-May, 2020 2015-May, 2020 
Cincinnati 2015-May, 2020 2015-May, 2020 - - 
Cleveland - - - 2015-May, 2020 
Columbus 2015-May, 2020 - - 2015-May, 2020 
Dallas 2017-May, 2020 - - 2015-May, 2020 
Denver 2015-May, 2020 - - - 
Detroit 2017-May, 2020 - - 2015-May, 2020 
Fort Worth 2019-May, 2020 - - 2017-May, 2020 
Houston 2015-May, 2020 - - - 
Los Angeles 2015-May, 2020 2015-May, 2020 - 2015-May, 2020 
Miami - - - 2015-May, 2020 
Milwaukee 2015-May, 2020 - - - 
Minneapolis 2015-May, 2020 - - 2015-May, 2020 
Nashville 2015-May, 2020 2015-May, 2020 2015-May, 2020 - 
New York City 2015-May, 2020 2015-May, 2020 - 2015-May, 2020 
Philadelphia 2015-May, 2020 2015-May, 2020 - 2015-May, 2020 
Phoenix Nov, 2015-May, 2020 - - - 
Pittsburgh 2016-May, 2020 - - 2015-May, 2020 
Portland Apr, 2015-May, 2020 - - - 
San Francisco 2015-May, 2020 2015-May, 2020 2015-May, 2020 2015-May, 2020 
Seattle 2015-May, 2020 - - - 
Washington DC 2015-May, 2020 - - - 
City Count 23 9 4 15 

Note: This table lists the 25 cities from which data was obtained and the time period covered for each data type.  Not all cities report each crime type – 
see row labeled “# of cities” in Table 1 for detail.  Data obtained directly from city police departments. 
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Table A2: Summary Statistics 
 

 

Note: Crime incident summary statistics reported for all cities that report the specified crime (see Table 1 for 
count).  Mean incidents reported per 100,000 people are presented separately for the 7 weeks before and 4 
weeks after the stay-at-home order is issued in a city.  The overall standard deviation is reported by crime 
type, as well as the before-after difference and the t-statistic.  Data obtained directly from city police 
departments. 

 

 
 

  

Mean 
(before)

Mean 
(after)

SD 
(overall) Difference t-stat

Overall 23.23 18.84 9.20 -4.39 -25.1
Violent 2.36 2.29 1.56 -0.07 -2.1
Property 10.13 8.32 3.68 -1.81 -23.3
Drug 1.51 0.63 1.42 -0.87 -45.14
Homicide 0.04 0.05 0.09 0.01 5.89
Shooting 0.41 0.44 0.77 0.03 1.31
Aggravated Assault 1.09 1.19 0.76 0.10 6.02
Simple Assault 2.90 2.42 1.59 -0.48 -12.07
Rape 0.16 0.11 0.18 -0.06 -18.11
Robbery 0.90 0.65 0.64 -0.26 -23.80
Burglary 1.85 1.75 1.14 -0.10 -2.47
Burglary (Residential) 1.28 0.79 0.91 -0.49 -32.5
Burglary (Non-Residential) 0.47 0.87 0.65 0.40 9.5
Theft 5.64 3.85 2.75 -1.79 -48.2
Car Theft 1.24 1.41 0.80 0.17 9.7
Theft from Car 2.88 2.22 2.06 -0.66 -20.7

Incidents per 100k
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Table A3: Police-originated Share of Crime Incidents Relative to 
Pandemic Onset 

 

  

Note: Share of crime incidents reported by police for 3 broad crime categories is presented for Nashville and 
Dallas.  Data from the 7 weeks prior to the stay-at-home order is in the Pre columns; Post includes the 4 
weeks after the stay-at-home order.  Data obtained from the respective cities. 

  

Pre Post Pre Post
Violent 3.6% 4.1% 10.8% 18.0%
Property 3.4% 3.7% 7.0% 4.8%
Drug 64.3% 69.1% 64.4% 70.3%

Nashville Dallas
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Table A4: Change in Crime Rate Around Bars After Lockdown, 
Philadelphia  

 
  

 Dependent variable: Log of Crime Incidents      

 
Theft Robbery 

Simple 
Assault Drugs 

 (1) (2) (3) (4) 
          
After*Treat -0.651*** -0.615*** -0.490*** -1.375*** 

 (0.112) (0.170) (0.129) (0.325) 
     

After*Treat*200m 0.365** 0.248 0.063 0.257 
 (0.144) (0.265) (0.154) (0.488) 
     

After*Treat*300m 0.395*** 0.667** -0.048 -0.269 
 (0.142) (0.274) (0.159) (0.384) 
     

After*Treat*Remainder 0.324*** 0.462** 0.044 0.139 
 (0.120) (0.204) (0.140) (0.385) 
     

Constant 4.231*** 2.287*** 3.573*** 2.585*** 
 (0.042) (0.080) (0.046) (0.086) 

          
Observations 264 264 264 264 
Adjusted R2 0.943 0.839 0.957 0.823 
    
Note: This table reports the change in Philadelphia crime incidents from the pandemic 
onset conditioning on proximity to bars/restaurants. Crimes are classified into regions 
of 0-100m, 100-200m, 200-300m and >300m from the nearest bar/restaurant. The 
change in crime incidents is then reported using a similar specification to the difference-
in-difference in equation 1 but interacting After*Treat with a dummy for each region 
(After*Treat*100m is excluded).  Each column reports a separate regression. 
Observations range from 7 weeks before stay-at-home order to 4 weeks after; the same 
weeks of the year are used for all years.  After = 1 beginning the week of the stay-at-
home order and 0 otherwise; Treat = 1 for 2020 and 0 otherwise.  All regressions 
include year and  week fixed effects.  Standard errors calculated by wild bootstrap.  Data 
source: city police departments. 
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Table A5: Pandemic Onset Impact on Arrests 
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Table A6: Robustness Checks 

      
  Dependent variable: Log of Overall Crime 

Incidents   
 Before window After window     
 7 weeks 5 weeks 3 weeks 2 weeks 4 weeks 6 weeks 8 weeks 2019 Unemployment 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
                    

After*Treat -0.265*** -0.241*** -0.203*** -0.259*** -0.265*** -0.255*** -0.248*** -0.255*** -0.227*** 
 (0.024) (0.025) (0.027) (0.031) (0.024) (0.020) (0.018) (0.022) (0.047) 
        

  
Unemployment 
Rate 

       
 

-0.005 
        

 (0.004) 
      

Observations 1,221 999 777 999 1,221 1,443 1665 418 1,221 
Adjusted R2 0.976 0.983 0.985 0.975 0.976 0.977 0.978 0.985 0.976 

      
        

*p**p***p<0.01 
Note: This table present results robustness checks of the main results presented in Table 1.  Overall crime rate is the dependent variable in each column, which presents 
a separate regression based off the difference-in-difference specification in equation 1 with the following differences.  The first 3 columns vary the number of weeks in 
the before period; the next 4 columns vary the number of weeks in the after period.  7 weeks in the before period and 4 weeks in the after period is the baseline that is 
used in Table 1.  Column 8 uses only data from 2019 and 2020.  Column 9 adds the unemployment rate as an additional control variable to the base specification.  After = 
1 beginning the week of the stay-at-home order and 0 otherwise; Treat = 1 for 2020 and 0 otherwise.  All regressions include city and week fixed effects.  Standard errors 
calculated by wild bootstrap.  Data source: city police departments. 
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Table A7: Crime Drop by City 

 

Note: Using incidents as the measure of crime, the difference-in-difference specification (equation 1) is estimated for all crime types as well as by broad categories using 
weekly crime data separately for 19 large U.S. cities for 2015 – 2020.   Observations range from 7 weeks before stay-at-home order to 4 weeks after in that city; the same 
weeks of the year are used for all years.  After = 1 beginning the week of the stay-at-home order and 0 otherwise; Treat = 1 for 2020 and 0 otherwise.  All regressions 
include week fixed effects.  Standard errors calculated by wild bootstrap.  Data source: city police departments. 
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Appendix B. Data Construction 
 
Incidents 
The focus of this paper is on crime incidents – these are crimes reported to the police by 
individuals or observed by the police.  Most data comes from Open Data web portals for 
each city with a preference for using APIs where available.  The data sets for Columbus and 
Fort Worth were provided directly in response to inquiries. 
 
Crime categories included in the original data are used when available.  Not all cities report 
all categories of crime.  For example, 6 cities do not report drug crimes in these data sets 
and 3 do not report rapes.  Some subcategories (e.g. non-residential burglary) cannot be 
assigned for all cities when the data does not allow for this level of granularity.  
Standardized UCR or NIBRS offense categories are frequently missing, which limits the 
utility of direct cross-city comparison.  Where crime categories are not included, a 
keyword-based classification algorithm is employed to assign categories.  The emphasis is 
on ensuring that within-city categorization is consistent across time.  This occasionally 
requires categories to be dropped if categories are not reported for all years.  Since all of 
the analysis contains city or city*crime fixed effects, differences in crime classification 
should not impact the results. 
 
Crime category definitions: 
 

• Violent - Includes homicide, rape (not statutory), robbery and aggravated assault 
• Property - Includes arson, theft, burglary and motor vehicle theft 
• Drug - Includes possession and distribution of illegal drugs 
• Aggravated assault - An unlawful attack by one person upon another for the purpose 

of inflicting severe or aggravated bodily harm. 
• Burglary - All burglaries regardless of premises 
• Burglary (Residential)- Burglaries of a residence itself, does not include burglary of 

a car in a driveway or of a hotel  
• Burglary (Non-Residential) - Burglary of commercial premises 
• Domestic violence - Non-property crimes of a domestic nature either against a 

partner, child or dependent adult. This includes but is not limited to assault, 
stalking, violation of protection orders and child abuse. 

• Homicide - Murder and manslaughter not including vehicular manslaughter 
• Motor vehicle theft - Theft of a vehicle includes cars, buses, trucks and motorbikes 
• Rape - Sexual penetration but not including statutory rape where it is possible to 

separate 
• Robbery - Includes robbery with or without a weapon 
• Shooting - Where an individual is shot with any type of firearm regardless of 

whether the injury caused the death of the victim 
• Simple assault - An unlawful physical attack upon another person without the use of 

a weapon and where the victim did not suffer severe or aggravated bodily injury. 
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Where possible to exclude, assaults without physical contact such as stalking and 
intimidation were not included. 

• Theft - All forms of theft other than motor vehicle theft 
• Theft from car - Theft of items from a car separate from the theft of the car itself 

 
Arrests 
Arrest data is typically obtained from Open Data Portals, often in the same datasets as the 
incident data, and uses the same categorization methodology.  Some arrest data is also 
obtained directly from the cities.  As there often isn’t a separate arrest date, the crime 
occurrence date is generally used 
 
COVID 
Data on COVID incidence is taken from New York Times available at 
https://github.com/nytimes/covid-19-data.   This data is provided at the county level and 
thus we proxy cases and deaths within the cities we analyze with the data for the county in 
which they are located.  Note that New York City is comprised of multiple counties and 
includes the sum of those figures. As the dataset reports total cases and deaths to date we 
difference the data to calculate new daily cases and deaths. 

 
 
Mobility 
Google Mobility reports https://support.google.com/covid19-
mobility?hl=en#topic=9822927 were used to assess level of activity as the pandemic 
began.  The data comes from use of the Google Maps and is available at the county level.  It 
is reported as a change in mobility relative to a baseline which is the average value for that 
day of the week from the period Jan 3 – Feb 6, 2020. We make use of 4 of the 6 categories 
provided:  Retail/Recreation, Transit, Workplace and Residential. Note that the residential 
category measures a change in duration while all other categories measure a change in the 
total number of visitors.  

 
Key Dates 
The key dates such as stay at home orders, reopening and protests start dates are generally 
sourced from news articles. The mobility drop dates are identified as the first day a city 
experienced a 20% drop in mobility within the transit and retail/recreation categories 
alongside a 5% increase in residential which roughly corresponds to a 2 standard deviation 
move from the mean from 15Feb2020-15Mar2020. 
 
Links to city data sources (when available) listed below.  Additional data construction 
detail available on request from the author. 
 

City Data Type Link 
Atlanta Jail http://www.dcor.state.ga.us/Research/Mont

hly_Profile_all_inmates 
Austin 
 

Incidents/Arrests https://data.austintexas.gov/resource/fdj4-
gpfu.csv  

https://github.com/nytimes/covid-19-data
https://support.google.com/covid19-mobility?hl=en#topic=9822927
https://support.google.com/covid19-mobility?hl=en#topic=9822927
http://www.dcor.state.ga.us/Research/Monthly_Profile_all_inmates
http://www.dcor.state.ga.us/Research/Monthly_Profile_all_inmates
https://data.austintexas.gov/resource/fdj4-gpfu.csv
https://data.austintexas.gov/resource/fdj4-gpfu.csv
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Jail https://www.traviscountytx.gov/media/kun
ena/attachments/101/TC-JAIL-
DASHBOARD-5-18-2020.pdf 

Baltimore 
 

Incidents  https://data.baltimorecity.gov/resource/wsf
q-mvij.csv? 

Arrests https://data.baltimorecity.gov/resource/3i3
v-ibrt.csv? 

Shootings https://data.baltimorecity.gov/resource/kj8
k-eunk.csv?  

Boston Incidents https://data.boston.gov/dataset/6220d948-
eae2-4e4b-8723-
2dc8e67722a3/resource/12cb3883-56f5-
47de-afa5-
3b1cf61b257b/download/tmph3gusfdy.csv 

Chicago Incidents/Arrests https://data.cityofchicago.org/resource/qzd
f-xmn8.csv? 

Cincinnati 
 

Incidents https://opendata.dc.gov/search?q=crime%2
0incidents 

Stops https://data.cincinnati-
oh.gov/resource/hibq-hbnj.csv? 

Dallas 
 

Incidents/Shootin
gs 

https://www.dallasopendata.com/resource/
qv6i-rri7.csv? 

Arrests https://www.dallasopendata.com/resource/
sdr7-6v3j.csv? 

Denver Incidents https://www.denvergov.org/media/gis/Dat
aCatalog/crime/csv/crime.csv 

Detroit Incidents https://data.detroitmi.gov/datasets/rms-
crime-incidents/data?geometry=-
83.465%2C42.264%2C-82.733%2C42.442 

Fort Worth Incidents https://data.fortworthtexas.gov/resource/k
6ic-7kp7.csv? 

Houston Incidents https://www.houstontx.gov/police/cs/Mont
hly_Crime_Data_by_Street_and_Police_Beat.ht
m 

Los Angeles 
 

Incidents https://data.lacity.org/resource/2nrs-
mtv8.csv? 

Arrests https://data.lacity.org/resource/amvf-
fr72.csv?  

Stops https://data.lacity.org/resource/ci25-
wgt7.csv? 

Miami Jail https://gis-
mdc.opendata.arcgis.com/datasets/db65821
4dccf4331bc1d82c8547d170a_0/data 

Milwaukee 
 

Incidents https://data.milwaukee.gov/dataset/e5feaa
d3-ee73-418c-b65d-

https://www.traviscountytx.gov/media/kunena/attachments/101/TC-JAIL-DASHBOARD-5-18-2020.pdf
https://www.traviscountytx.gov/media/kunena/attachments/101/TC-JAIL-DASHBOARD-5-18-2020.pdf
https://www.traviscountytx.gov/media/kunena/attachments/101/TC-JAIL-DASHBOARD-5-18-2020.pdf
https://data.baltimorecity.gov/resource/wsfq-mvij.csv
https://data.baltimorecity.gov/resource/wsfq-mvij.csv
https://data.baltimorecity.gov/resource/3i3v-ibrt.csv
https://data.baltimorecity.gov/resource/3i3v-ibrt.csv
https://data.baltimorecity.gov/resource/kj8k-eunk.csv
https://data.baltimorecity.gov/resource/kj8k-eunk.csv
https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmph3gusfdy.csv
https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmph3gusfdy.csv
https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmph3gusfdy.csv
https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmph3gusfdy.csv
https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmph3gusfdy.csv
https://data.cityofchicago.org/resource/qzdf-xmn8.csv
https://data.cityofchicago.org/resource/qzdf-xmn8.csv
https://opendata.dc.gov/search?q=crime%20incidents
https://opendata.dc.gov/search?q=crime%20incidents
https://data.cincinnati-oh.gov/resource/hibq-hbnj.csv
https://data.cincinnati-oh.gov/resource/hibq-hbnj.csv
https://www.dallasopendata.com/resource/qv6i-rri7.csv
https://www.dallasopendata.com/resource/qv6i-rri7.csv
https://www.dallasopendata.com/resource/sdr7-6v3j.csv
https://www.dallasopendata.com/resource/sdr7-6v3j.csv
https://www.denvergov.org/media/gis/DataCatalog/crime/csv/crime.csv
https://www.denvergov.org/media/gis/DataCatalog/crime/csv/crime.csv
https://data.detroitmi.gov/datasets/rms-crime-incidents/data?geometry=-83.465%2C42.264%2C-82.733%2C42.442
https://data.detroitmi.gov/datasets/rms-crime-incidents/data?geometry=-83.465%2C42.264%2C-82.733%2C42.442
https://data.detroitmi.gov/datasets/rms-crime-incidents/data?geometry=-83.465%2C42.264%2C-82.733%2C42.442
https://data.fortworthtexas.gov/resource/k6ic-7kp7.csv
https://data.fortworthtexas.gov/resource/k6ic-7kp7.csv
https://www.houstontx.gov/police/cs/Monthly_Crime_Data_by_Street_and_Police_Beat.htm
https://www.houstontx.gov/police/cs/Monthly_Crime_Data_by_Street_and_Police_Beat.htm
https://www.houstontx.gov/police/cs/Monthly_Crime_Data_by_Street_and_Police_Beat.htm
https://data.lacity.org/resource/2nrs-mtv8.csv
https://data.lacity.org/resource/2nrs-mtv8.csv
https://data.lacity.org/resource/amvf-fr72.csv
https://data.lacity.org/resource/amvf-fr72.csv
https://data.lacity.org/resource/ci25-wgt7.csv
https://data.lacity.org/resource/ci25-wgt7.csv
https://gis-mdc.opendata.arcgis.com/datasets/db658214dccf4331bc1d82c8547d170a_0/data
https://gis-mdc.opendata.arcgis.com/datasets/db658214dccf4331bc1d82c8547d170a_0/data
https://gis-mdc.opendata.arcgis.com/datasets/db658214dccf4331bc1d82c8547d170a_0/data
https://data.milwaukee.gov/dataset/e5feaad3-ee73-418c-b65d-ef810c199390/resource/87843297-a6fa-46d4-ba5d-cb342fb2d3bb/download/wibr.csv
https://data.milwaukee.gov/dataset/e5feaad3-ee73-418c-b65d-ef810c199390/resource/87843297-a6fa-46d4-ba5d-cb342fb2d3bb/download/wibr.csv
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ef810c199390/resource/87843297-a6fa-
46d4-ba5d-
cb342fb2d3bb/download/wibr.csv 

Jail https://doc.wi.gov/Pages/DataResearch/Dat
aAndReports.aspx 

Minneapolis 
 

Incidents http://opendata.minneapolismn.gov/search?
q=police%20incidents 

Stops http://opendata.minneapolismn.gov/dataset
s/police-stop-data 

Nashville 
 

Incidents/Arrests https://data.nashville.gov/resource/sie3-
y9k4.csv? 

Stops https://www.nashville.gov/Police-
Department/Executive-Services/Strategic-
Development/Crime-Analysis/Reports.aspx 

Jail https://www.tn.gov/correction/statistics-
and-information/jail-summary-reports.html 

New York 
 

Incidents https://data.cityofnewyork.us/resource/5ua
c-w243.csv? 

Arrests https://data.cityofnewyork.us/resource/uip
8-fykc.csv? 

Shootings https://data.cityofnewyork.us/resource/5uc
z-vwe8.csv? 

Jail https://www.criminaljustice.ny.gov/crimnet
/ojsa/jail_population.pdf 

Philadelphia 
 

Incidents https://phl.carto.com/api/v2/sql?filename=i
ncidents_part1_part2&format=csv 

Arrests https://raw.githubusercontent.com/phillyda
o/phillydao-public-
data/master/docs/data/arrest_data_daily_by
_district.csv 

Shootings https://phl.carto.com/api/v2/sql?q=SELECT
+*,+ST_Y(the_geom)+AS+lat,+ST_X(the_geom
)+AS+lng+FROM+shootings&filename=shoot
ings&format=csv 

Stops https://phl.carto.com/api/v2/sql?filename=
car_ped_stops&format=csv 

Phoenix 
 

Incidents https://www.phoenixopendata.com/dataset
/cc08aace-9ca9-467f-b6c1-
f0879ab1a358/resource/0ce3411a-2fc6-
4302-a33f-
167f68608a20/download/crimestat.csv 

Jail https://corrections.az.gov/reports-
documents/reports/corrections-glance 

Pittsburgh Incidents https://data.wprdc.org/dataset/uniform-
crime-reporting-data 

https://data.milwaukee.gov/dataset/e5feaad3-ee73-418c-b65d-ef810c199390/resource/87843297-a6fa-46d4-ba5d-cb342fb2d3bb/download/wibr.csv
https://data.milwaukee.gov/dataset/e5feaad3-ee73-418c-b65d-ef810c199390/resource/87843297-a6fa-46d4-ba5d-cb342fb2d3bb/download/wibr.csv
https://data.milwaukee.gov/dataset/e5feaad3-ee73-418c-b65d-ef810c199390/resource/87843297-a6fa-46d4-ba5d-cb342fb2d3bb/download/wibr.csv
https://doc.wi.gov/Pages/DataResearch/DataAndReports.aspx
https://doc.wi.gov/Pages/DataResearch/DataAndReports.aspx
http://opendata.minneapolismn.gov/search?q=police%20incidents
http://opendata.minneapolismn.gov/search?q=police%20incidents
https://data.nashville.gov/resource/sie3-y9k4.csv
https://data.nashville.gov/resource/sie3-y9k4.csv
https://www.nashville.gov/Police-Department/Executive-Services/Strategic-Development/Crime-Analysis/Reports.aspx
https://www.nashville.gov/Police-Department/Executive-Services/Strategic-Development/Crime-Analysis/Reports.aspx
https://www.nashville.gov/Police-Department/Executive-Services/Strategic-Development/Crime-Analysis/Reports.aspx
https://www.tn.gov/correction/statistics-and-information/jail-summary-reports.html
https://www.tn.gov/correction/statistics-and-information/jail-summary-reports.html
https://data.cityofnewyork.us/resource/5uac-w243.csv
https://data.cityofnewyork.us/resource/5uac-w243.csv
https://data.cityofnewyork.us/resource/uip8-fykc.csv
https://data.cityofnewyork.us/resource/uip8-fykc.csv
https://data.cityofnewyork.us/resource/5ucz-vwe8.csv
https://data.cityofnewyork.us/resource/5ucz-vwe8.csv
https://www.criminaljustice.ny.gov/crimnet/ojsa/jail_population.pdf
https://www.criminaljustice.ny.gov/crimnet/ojsa/jail_population.pdf
https://phl.carto.com/api/v2/sql?filename=incidents_part1_part2&format=csv
https://phl.carto.com/api/v2/sql?filename=incidents_part1_part2&format=csv
https://raw.githubusercontent.com/phillydao/phillydao-public-data/master/docs/data/arrest_data_daily_by_district.csv
https://raw.githubusercontent.com/phillydao/phillydao-public-data/master/docs/data/arrest_data_daily_by_district.csv
https://raw.githubusercontent.com/phillydao/phillydao-public-data/master/docs/data/arrest_data_daily_by_district.csv
https://raw.githubusercontent.com/phillydao/phillydao-public-data/master/docs/data/arrest_data_daily_by_district.csv
https://phl.carto.com/api/v2/sql?q=SELECT+*,+ST_Y(the_geom)+AS+lat,+ST_X(the_geom)+AS+lng+FROM+shootings&filename=shootings&format=csv
https://phl.carto.com/api/v2/sql?q=SELECT+*,+ST_Y(the_geom)+AS+lat,+ST_X(the_geom)+AS+lng+FROM+shootings&filename=shootings&format=csv
https://phl.carto.com/api/v2/sql?q=SELECT+*,+ST_Y(the_geom)+AS+lat,+ST_X(the_geom)+AS+lng+FROM+shootings&filename=shootings&format=csv
https://phl.carto.com/api/v2/sql?q=SELECT+*,+ST_Y(the_geom)+AS+lat,+ST_X(the_geom)+AS+lng+FROM+shootings&filename=shootings&format=csv
https://phl.carto.com/api/v2/sql?filename=car_ped_stops&format=csv
https://phl.carto.com/api/v2/sql?filename=car_ped_stops&format=csv
https://www.phoenixopendata.com/dataset/cc08aace-9ca9-467f-b6c1-f0879ab1a358/resource/0ce3411a-2fc6-4302-a33f-167f68608a20/download/crimestat.csv
https://www.phoenixopendata.com/dataset/cc08aace-9ca9-467f-b6c1-f0879ab1a358/resource/0ce3411a-2fc6-4302-a33f-167f68608a20/download/crimestat.csv
https://www.phoenixopendata.com/dataset/cc08aace-9ca9-467f-b6c1-f0879ab1a358/resource/0ce3411a-2fc6-4302-a33f-167f68608a20/download/crimestat.csv
https://www.phoenixopendata.com/dataset/cc08aace-9ca9-467f-b6c1-f0879ab1a358/resource/0ce3411a-2fc6-4302-a33f-167f68608a20/download/crimestat.csv
https://www.phoenixopendata.com/dataset/cc08aace-9ca9-467f-b6c1-f0879ab1a358/resource/0ce3411a-2fc6-4302-a33f-167f68608a20/download/crimestat.csv
https://corrections.az.gov/reports-documents/reports/corrections-glance
https://corrections.az.gov/reports-documents/reports/corrections-glance
https://data.wprdc.org/dataset/uniform-crime-reporting-data
https://data.wprdc.org/dataset/uniform-crime-reporting-data
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Arrests https://data.wprdc.org/dataset/arrest-data 
Portland Incidents https://www.portlandoregon.gov/police/71

978 
San 
Francisco 

Incidents/Arrests https://data.sfgov.org/resource/wg3w-
h783.csv? 

Jail https://data.sfgov.org/City-Management-
and-Ethics/Scorecard-Measures/kc49-udxn 

Seattle 
 

Incidents https://data.seattle.gov/resource/tazs-
3rd5.csv? 

Stops https://data.seattle.gov/resource/28ny-
9ts8.csv? 

Jail https://data.kingcounty.gov/Law-
Enforcement-Safety/King-County-jail-
COVID-19-statistics/qdny-y8ei 

St. Louis Incidents http://www.slmpd.org/Crimereports.shtml 
Washington 
DC 
 

Incidents https://opendata.dc.gov/search?q=crime%2
0incidents 

Jail https://doc.dc.gov/sites/default/files/dc/sit
es/doc/publication/attachments/DCDepart
mentofCorrections_FactsandFigures_April20
20_0.pdf 

   
 

https://data.wprdc.org/dataset/arrest-data
https://www.portlandoregon.gov/police/71978
https://www.portlandoregon.gov/police/71978
https://data.sfgov.org/resource/wg3w-h783.csv
https://data.sfgov.org/resource/wg3w-h783.csv
https://data.sfgov.org/City-Management-and-Ethics/Scorecard-Measures/kc49-udxn
https://data.sfgov.org/City-Management-and-Ethics/Scorecard-Measures/kc49-udxn
https://data.seattle.gov/resource/tazs-3rd5.csv
https://data.seattle.gov/resource/tazs-3rd5.csv
https://data.seattle.gov/resource/28ny-9ts8.csv
https://data.seattle.gov/resource/28ny-9ts8.csv
https://data.kingcounty.gov/Law-Enforcement-Safety/King-County-jail-COVID-19-statistics/qdny-y8ei
https://data.kingcounty.gov/Law-Enforcement-Safety/King-County-jail-COVID-19-statistics/qdny-y8ei
https://data.kingcounty.gov/Law-Enforcement-Safety/King-County-jail-COVID-19-statistics/qdny-y8ei
http://www.slmpd.org/Crimereports.shtml
https://opendata.dc.gov/search?q=crime%20incidents
https://opendata.dc.gov/search?q=crime%20incidents
https://doc.dc.gov/sites/default/files/dc/sites/doc/publication/attachments/DCDepartmentofCorrections_FactsandFigures_April2020_0.pdf
https://doc.dc.gov/sites/default/files/dc/sites/doc/publication/attachments/DCDepartmentofCorrections_FactsandFigures_April2020_0.pdf
https://doc.dc.gov/sites/default/files/dc/sites/doc/publication/attachments/DCDepartmentofCorrections_FactsandFigures_April2020_0.pdf
https://doc.dc.gov/sites/default/files/dc/sites/doc/publication/attachments/DCDepartmentofCorrections_FactsandFigures_April2020_0.pdf
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