AI in Adjudication and Administration

Cary Coglianese
University of Pennsylvania Carey Law School

Lavi M. Ben Dor
University of Pennsylvania

Follow this and additional works at: https://scholarship.law.upenn.edu/faculty_scholarship

Part of the Administrative Law Commons, Courts Commons, Criminal Law Commons, Law Enforcement and Corrections Commons, Public Administration Commons, Public Law and Legal Theory Commons, and the State and Local Government Law Commons

Repository Citation
https://scholarship.law.upenn.edu/faculty_scholarship/2118

This Article is brought to you for free and open access by Penn Law: Legal Scholarship Repository. It has been accepted for inclusion in Faculty Scholarship at Penn Law by an authorized administrator of Penn Law: Legal Scholarship Repository. For more information, please contact PennlawIR@law.upenn.edu.
AI in Adjudication and Administration

Cary Coglianese & Lavi M. Ben Dor
University of Pennsylvania Law School

Forthcoming in the Brooklyn Law Review

Abstract

The use of artificial intelligence has expanded rapidly in recent years across many aspects of the economy. For federal, state, and local governments in the United States, interest in artificial intelligence has manifested in the use of a series of digital tools, including the occasional deployment of machine learning, to aid in the performance of a variety of governmental functions. In this Article, we canvass the current uses of such digital tools and machine-learning technologies by the judiciary and administrative agencies in the United States. Although we have yet to see fully automated decision-making find its way into either adjudication or administration, governmental entities at all levels are taking steps that could lead to the implementation of automated, machine-learning decision tools in the relatively near future. Within the federal and state court systems, for example, machine-learning tools have yet to be deployed, but other efforts have put in place digital building blocks toward such use. These efforts include the increased digitization of court records that algorithms will need to draw upon for data, the growth of online dispute resolution inside and outside of the courts, and the incorporation of non-learning risk assessment tools as inputs into bail, sentencing, and parole decisions. Administrative agencies have proven much more willing than courts to use machine-learning algorithms, deploying such algorithmic tools to help in the delivery of public services, management of government programs, and targeting of enforcement resources. We discuss already emerging concerns about the deployment of artificial intelligence and related digital tools to support judicial and administrative decision-making. If artificial intelligence is managed responsibly to address such concerns, the use of algorithmic tools by governmental entities throughout the United States would appear to show much future promise. This Article’s canvass of current uses of algorithmic tools can serve as a benchmark against which to gauge future growth in the use of artificial intelligence in the public sector.
Artificial intelligence (AI) has begun to permeate many aspects of U.S. society. In settings as varied as medicine, transportation, financial services, and entertainment, digital technologies that rely on machine-learning algorithms to process vast quantities of data continue to emerge and make highly accurate predictions that can often outperform human ability to perform similar tasks. As a result, the potential utility of artificial intelligence in the legal field has not gone...
This article seeks to capture the state of the art of the current uses of digitization, algorithmic tools, and machine learning in domestic governance in the United States. It serves, in effect, as a status report on nonmilitary governmental use—that is, functions by courts and administrative agencies—of artificial intelligence and its building blocks throughout the United States. With responsibility for domestic governance divided in a federalist structure across fifty-one governments—those of the fifty states plus the national government—the scope of this article’s coverage is vast. Its subject matter is also a rapidly changing one. As new technologies and applications emerge in the private sector, both pressures and opportunities for their use in public sector settings will grow. The vast scope and fast pace of algorithmic governance makes the kind of stock-taking reflected in this paper all the more valuable for informing both scholarship and public deliberation. To assess the value that artificial intelligence holds as well as identify opportunities for its application in domestic governance, it is important to

4 We do not address military and security intelligence-gathering uses because they obviously are subject to security classification. For an in-depth treatment of artificial intelligence in U.S. military applications, however, see PAUL SCHARRE, ARMY OF NONE: AUTONOMOUS WEAPONS AND THE FUTURE OF WAR (2018). We also do not address in this article the use of AI tools by legislatures, mainly because such use “remains something of a next frontier.” Monika Zalnieriute et al., From Rule of Law to Statute Drafting: Legal Issues for Algorithms in Government Decision-Making, in Woodrow Barfield, ed., CAMBRIDGE HANDBOOK ON THE LAWS OF ALGORITHMS: HUMAN RIGHTS, INTELLECTUAL PROPERTY, GOVERNMENT REGULATION 251-272 (2021). AI tools make concrete, individual forecasts, which more naturally make them conducive to adjudicatory and administrative contexts where individualized determinations must be made. As one of us as noted elsewhere, “[a] bit more technical imagination and advancement may be required for machine learning to usher in automatic regulation”—or, for similar reasons, legislation. Coglianese & Lehr, supra note 1, at 9. That said, public support for such use may be growing. In one very small survey, at least 40 percent of Americans reportedly favored replacing some of their legislators with AI systems (and 51 percent of Europeans and 75 percent of the Chinese population apparently did as well). Sam Shad, More than Half of Europeans Want to Replace Lawmakers with AI, Study Says, CNBC (May 27, 2021), https://www.cnbc.com/2021/05/27/europeans-want-to-replace-lawmakers-with-ai.html. Although the actual replacement of legislators with AI tools may be some time away, the involvement of legislatures in overseeing and crafting rules about the use of AI by others, including by courts and administrative agencies, is clearly already in taking place. See, e.g., State Artificial Intelligence Policy, ELEC. PRIV. INFO. CTR., https://epic.org/state-policy/ai/ (last visited May 23, 2021); Legislation Related to Artificial Intelligence, NAT’L CONFERENCE STATE LEGISLATURES, https://www.ncsl.org/research/telecommunications-and-information-technology/2020-legislation-related-to-artificial-intelligence.aspx (last updated Apr. 16, 2021).

understand where and how it is currently being used. Such a stock-taking can also facilitate future research evaluating current applications and making recommendations for the diffusion of artificial intelligence in new settings.

Such an accounting of the use of AI in government is also valuable because there currently exists no centralized repository of applications of artificial intelligence by courts and administrative agencies. Given the U.S. federalist structure, the development and implementation of this technology is also not determined by any central institution. Technology decisions are made at the federal level in as many as several hundreds of separate administrative agencies. The number of comparable agencies at the state and local level surely runs into the tens of thousands, and apparently no one has ever tried to count them all. Even with respect simply to law enforcement agencies, it has been noted that “the decentralized, fragmented, and local nature of law enforcement in the United States makes it challenging to accurately count the number of agencies.”

A similar profusion of institutions and actors are involved in making technology decisions for courts throughout the United States. The federal court system comprises, in addition to one Supreme Court, a total of thirteen “circuits” in the federal appellate court system and ninety-four trial court “districts” (each with dozens of trial judges that in total number over 650 courtrooms). At the state level, the number of different courts proliferates still further—especially given that state governments further delegate domestic authority to county and municipal governments. According to the National Center for State Courts, approximately 15,000–17,000 different state and municipal courts exist in the United States.

Any one of these numerous judicial or administrative entities could in principle have its own policy with respect to electronic filing, digitization of

7 Indeed, just getting a count of the number of federal agencies is difficult. One scholarly report published by a governmental agency noted that “there is no authoritative list of government agencies. Every list of federal agencies in government publications is different.” DAVID E. LEWIS & JENNIFER L. SELIN, SOURCEBOOK OF UNITED STATES EXECUTIVE AGENCIES (2012), https://www.acus.gov/sites/default/files/documents/Sourcebook-2012-Final_12-Dec_Online.pdf (reporting estimates of the number of federal administrative agencies that range from 252 to 405).

8 U.S. DEP’T OF JUSTICE, NATIONAL SOURCES OF LAW ENFORCEMENT EMPLOYMENT DATA 1 (Oct. 4, 2016), https://www.bjs.gov/content/pub/pdf/nsleed.pdf. As a rough estimate of the number of law enforcement agencies, we note that approximately 18,000 different police departments and other law enforcement agencies responded to a federally sponsored Census of State and Local Law Enforcement Agencies in 2008. Id.

10 This estimate is based on a telephone and email exchange with NCSC staff, and it includes a vast number of municipal courts. Indeed, the uncertainty reflected in the range (rather than a point estimate) is apparently due to fairly regular changes in the size and organization of municipal courts.
documents, or the use of algorithms to support decision-making. As a result, it is valuable for decision-makers in any of these settings, as well as scholars and practitioners, to have a source that catalogs current uses of artificial intelligence and its building blocks across the United States. Of course, any such survey of uses must be made with appropriate caution, as we can make no claim to have identified every use by any governmental entity. This article is based primarily on extensive searches of academic literature and media publications in an effort to identify current uses of machine-learning algorithms that aid decision-making within courts and agencies at both the state and federal levels of government. We also spoke with court and agency officials who would be in a position to know about the current uses of artificial intelligence and its building blocks by governmental entities, as well as leading consultants and academic experts developing and studying such possible uses. This research effort generated as comprehensive a survey of judicial and administrative uses of machine learning across federal and state governments as any of which we know.

The results of our research lead us to be quite confident in two overarching conclusions. First, no judicial or administrative body in the United States has instituted a system that provides for total decision-making by algorithm, such that a digital system makes a fully independent determination (that is, a human “out of the loop” decision). Second, we are also aware of no court that is currently relying in any way, even on a human-in-the-loop basis, on what we would consider to be machine-learning algorithms for judicial decisions. That said, one state has a parole board using a system based on a machine-learning algorithm to support prisoner release decisions, and numerous federal and state agencies have deployed or are currently researching the use of machine learning in support of various administrative functions.

Here, we distinguish such machine-learning algorithms—which we treat here as defining artificial intelligence—from two building blocks that might help lead to the eventual governmental use of artificial intelligence: digitization and

12 Other such efforts have resulted in excellent resources on AI use by governments but they have tended to have a more limited scope, either institutionally (e.g., only to agencies) or to one level of government (e.g., federal). See, e.g., DAVID FREEMAN ENGSTROM, DANIEL E. HO, CATHERINE M. SHARKEY & MARIANO-FLORENTINO CUÉLLAR, GOVERNMENT BY ALGORITHM: ARTIFICIAL INTELLIGENCE IN FEDERAL ADMINISTRATIVE AGENCIES (2020), https://www-cdn.law.stanford.edu/wp-content/uploads/2020/02/ACUS-AI-Report.pdf; HILA MEHR, ARTIFICIAL INTELLIGENCE FOR CITIZEN SERVICES AND GOVERNMENT (2017), https://ash.harvard.edu/files/ash/files/artificial_intelligence_for_citizen_services.pdf. Of course, especially in such a fast-moving domain as information technology, we cannot claim that we have ourselves identified or discussed in this article all of the uses of AI by governmental bodies in the United States.

13 For a discussion of the difference between using algorithms on a supportive versus determinative basis, see Coglianese & Lehr, supra note 1, at 31; Cary Coglianese & David Lehr, Regulating by Robot: Administrative Decision Making in the Machine-Learning Era, 105 GEO. L.J. 1147, 1167-1170 (2017).
algorithmic tools. Indeed, machine learning resides on the far end of a spectrum of digital technologies available to governments. The closest point on that spectrum begins with simple digitization—or the use of electronic filing or other data systems to manage information in electronic format. Digitization is a building block toward artificial intelligence because it can facilitate the availability of the “Big Data” on which machine learning is based.

Next on the spectrum would be for governments to rely on what we call here algorithmic tools—that is, traditional, human-created statistical models, indices, or scoring systems that are then used as decision tools. These traditional algorithmic or statistical tools rely on humans to select the specific variables to be included in a decision aid and the precise mathematical relationships between those variables.14

Only the final step on the spectrum—machine learning—constitutes what we will consider artificial intelligence, because learning algorithms essentially work “on their own” to process data and discover optimal mathematical relationships between them. Machine-learning algorithms can take many forms, but at essence machine learning refers to an algorithm’s ability to detect autonomously patterns in large amounts of data. This functionality gives machine-learning algorithms not only their name but also their often superior performance in predictive accuracy over traditional, human-guided algorithmic tools.

Of course, even with machine learning, humans must specify the objective that the learning algorithm is supposed to forecast or optimize, collect the data on which the algorithm will “learn,” and specify the general computational properties or architecture that the algorithm will deploy.15 Often, humans will also undertake a number of steps to “train” the algorithm and refine its operation. Yet machine-learning algorithms are different than traditional statistical tools because the precise ways that data are combined and analyzed are not fully determined in advance by a human analyst. These algorithms are also typically not as intuitively explainable after the fact. For this reason, machine-learning algorithms are often described as “black-box” algorithms because they do not afford a ready way of characterizing exactly how they work—that is, which variables mattered and how those variables were weighted for any given output—even though the outputs can be quite accurate in terms of achieving or optimizing the objectives that the algorithms have been designed to achieve.16

14 A typical example of a traditional statistical tool would be ordinary least squares regression analysis, where a human selects the variables and the functional form of the model. Admittedly, some computer scientists might well consider even conventional regression analysis as a type of “machine” learning because a statistical software package computes the coefficients in the model. But what we and others mean by machine learning refers to nonparametric models or algorithms that do not involve the human in expressly specifying the model’s functional form or even at times the precise variables to use in generating a predictive output. Coglianese & Lehr, supra note 14, at 1156-1159.

15 For an excellent primer on machine learning, see David Lehr & Paul Ohm, Playing with the Data: What Legal Scholars Should Learn About Machine Learning, 51 U.C. Davis L. Rev. 653, 669 (2017).

In the rest of this article, we first take up the status of artificial intelligence in the federal and state judiciaries. More precisely, we report on three building blocks that might eventually lead to the use of artificial intelligence in the courts: the increased digitization of court records, the use of algorithmic tools for risk assessment in aspects of the criminal justice process, and the growth of online dispute resolution outside of the courts. The most widespread innovation in the courts has occurred in various forms of digitization (such as electronic filing and case management), while some courts have relied on algorithmic tools to support pretrial, sentencing, or parole decisions. Some courts also recognize a role for online dispute resolution systems developed by the private sector.

We turn in Part II to a review of administrative agencies’ use of artificial intelligence. Many administrative systems have been digitized for some time, and administrative agencies have also long relied on traditional statistical analysis or algorithmic tools. But most relevant to the purposes of this article, some administrative agencies at the local, state, and federal level are also starting to use machine learning for certain analytical and decision support purposes. We thus devote our attention in Part II to these latter uses of machine learning in the administrative context.

In both parts of this article, we also highlight some of the legal issues, and at times the litigation and public controversy, that has surrounded certain applications of algorithmic tools or machine learning. Given the increased use of artificial intelligence in other facets of society, as well as in many other parts of the world, greater governmental reliance on machine learning in the United States will likely continue to increase. At some point in the not-too-distant future, autonomous decision-making systems based on machine learning may well begin to take the place of a government singularly and literally “of the people” and “by the people” in the United States.

I. ARTIFICIAL INTELLIGENCE BUILDING BLOCKS IN THE COURTS

As of today, of course, we know of no machine-learning tool that has been adopted in any court in the United States to make an ultimate, fully automated

18 Abraham Lincoln, Address Delivered at the Dedication of the Cemetery of Gettysburg (Nov. 19, 1863).
determination on a legal or factual question.19 However, several emerging trends in recent years could signal movement towards the eventual use of such automated adjudication via artificial intelligence. To date, the principal building blocks of artificial intelligence in the courts comprise the digitization of court filings and processes, the introduction of algorithmic tools for certain criminal court decisions, and the emergence of online dispute resolution as an alternative to traditional court proceedings for small claims.

\subsection{Digitization of Court Records}

Artificial intelligence depends on data.20 Increasingly, court systems in the United States have made data more easily accessible through the growing digitization of court documents.21 This digitization has in large part been internally driven by the courts. Courts at both the state and federal level, including the Supreme Court itself, have required electronic filing as one of several ways a party can submit motions or arguments to a court, or as the only method of doing so.22 In addition, virtually every state and the federal government post free forms online that can be downloaded and used by litigants.23 Some courts have created “dedicated computer kiosks” specifically designed to help litigants who lack legal representation.24 In California, for example, an “‘Online Self-Help Center’ offers

\begin{footnotesize}
\begin{itemize}
\item19 See Richard C. Kraus, \textit{Artificial Intelligence Invades Appellate Practice: The Here, The Near, and The Oh My Dear}, Am. Bar Ass’n (Feb. 5, 2019), https://www.americanbar.org/groups/judicial/publications/appellate_issues/2019/winter/artificial-intelligence-invades-appellate-practice-the-here-the-near-and-the-oh-my-dear/ (noting that in the United States, “the more fantastic ideas such as using AI to objectively decide cases by analyzing facts and applying law . . . are still figments of creative imaginations”).
\item20 See Willem Sundblad, \textit{Data Is the Foundation for Artificial Intelligence and Machine Learning}, FORBES (Oct. 18, 2018), https://www.forbes.com/sites/willemsundblad europe/2018/10/18/data-is-the-foundation-for-artificial-intelligence-and-machine-learning/#4bd8c64051b4 (“[D]ata is both the most underutilized asset of manufacturers and the foundational element that makes AI so powerful.”).
\item22 See, e.g., SUP. CT. R. 29 (requiring that in addition to filing documents with the Court Clerk, “all filers who are represented by counsel must submit documents to the [Supreme] Court’s electronic filing system”); 7TH CIR. R. 25 (“All documents must be filed and served electronically.”); E.D. PA. LOCAL R. 5.1.2 (“All civil and criminal cases filed in this court are required to be entered into the court’s Electronic Case Filing (‘ECF’) System”); CA R. CT. 2.253 (empowering state courts in California to either permit or require parties to file electronically).
\item24 Benjamin H. Barton & Stephanos Bibas, Rebooting Justice 123 (2017).
\end{itemize}
\end{footnotesize}
PDFs that can be filled in online and used for evictions, divorces, orders of protection, collection matters, small claims, and other issues.25

The federal judiciary has instituted a “comprehensive case management system” known as the Case Management/Electronic Case Files (CM/ECF) system that allows for convenient filing and organization of court documents, party pleadings, and other relevant materials.26 In 2002, Congress directed the federal courts to ensure that, with exceptions for certain documents filed under seal, “any document that is filed electronically [is also] publicly available online.”27 State and local courts have increasingly rolled out various electronic filing (or “e-filing”) software to replace paper submissions and docketing, many in the past decade.28 In Florida alone, individuals filed roughly 23.5 million documents totaling about 110 million pages from mid-2018 to mid-2019.29 These systems have created massive repositories of filings from litigants and judicial decisions and orders, all held in centralized databases.

In principle, artificial intelligence could take advantage of all of this data.30 At law firms, the increasing use of algorithmic tools, including those involving machine-learning algorithms, supports the review of documents during the discovery process. This “e-discovery” practice has been shown to have a “strong impact” on reducing the need for human labor—and it has spawned services that seek to analyze trends and make legal forecasts.31 In addition, artificial intelligence has been used by outside researchers

25 See, e.g., Dana Remus & Frank Levy, Can Robots Be Lawyers: Computers, Lawyers, and the Practice of Law, 30 GEO. J. LEGAL ETHICS 501, 515-16 (2017). Various private sector efforts are underway to make use of court data for predictive analytic purposes. One major service is Lex Machina, https://lexmachina.com/, which is used
to attempt to predict courts’ decisions using data. In a 2017 study, a machine-learning statistical model correctly predicted the outcome of 70% of 28,000 U.S. Supreme Court decisions and 72% of individual Justices’ votes from 1816 to 2015. With a growing amount of data available from courts at all levels across the country and demands for courts to facilitate widespread public access to case records, it is likely that such predictive efforts will only improve in quality in the future. In time, it may also be possible that artificial intelligence tools will have gained enough “experience” in document review to step into the role of the judges and, rather than just predicting their behavior, use the large troves of data available in electronic filing systems to help in making actual judicial determinations. Such a step would, of course, mark a considerable transformation in how judicial functions are performed, presenting potential implications for lawyering, judging, and public attitudes toward the courts.

B. Risk Assessment Algorithms

Algorithmic tools have taken root in some court systems as an aid to judicial decision-making in criminal cases on questions of bail, sentencing, and parole—but so far virtually none of these appear to rely on machine-learning algorithms. An algorithmic tool for bail decisions before trial that had originally been developed by the Arnold Foundation has been adopted by at least four states (Arizona, Kentucky, New Jersey, and Utah) and about a dozen municipal courts, by law firms. Another service, Docket Navigator, http://brochure.docketnavigator.com/, performs some basic analytics (albeit not with machine learning) for intellectual property cases.

33 See, e.g., Open Courts Act of 2020, H.R. 8235, 116th Cong. § 3(a) (2d Session 2020) (seeking to eliminate the fees charged for access to federal court records).

34 In a judiciary more reliant on AI tools to adjudicate disputes, systems that can sift through data and help make decisions could ultimately make the legal profession less labor-intensive, requiring fewer humans to review and analyze the thousands of documents that can be produced in the lifecycle of a case—thus potentially reducing the number of lawyers and support staff needed to handle the litigation process. See, e.g., Remus & Levy, supra note 31, at 535-36 (predicting that the adoption of advanced legal technology all at once would reduce attorney hours by 13%, or by 2.5% a year if adopted over the course of five years); Anthony E. Davis, The Future of Law Firms (and Lawyers) in the Age of Artificial Intelligence, 27 PROFESSIONAL LAWYER 3, 6 (2020) (“The drudge work traditionally done by new lawyers is already vanishing and will ultimately disappear almost entirely”). In addition, the automation in the future of various judicial tasks could affect the nature or quality of court decisions and litigants’ experiences interacting with the judiciary. For various perspectives on such a potential future, see, for example, Benjamin Minhao Chen, Alexander Stremitzer & Kevin Tobia, Having Your Day in Robot Court (UCLA Sch. of L. Pub. L. & Legal Theory Rsch. Paper, Paper No. 21-20, 2021), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3841534; Katherine B. Forrest, When Machines Can Be Judge, Jury, and Executioner: Justice in the Age of Artificial Intelligence (2021); Anthony J. Casey & Anthony Niblett, Will Robot Judges Change Litigation and Settlement Outcomes?, MIT COMPUT. L. REP. (Aug. 14, 2020), https://law.mit.edu/pub/willrobotjudgeschangelifelitigationandsettlementoutcomes/release/1; Aziz Z. Huq, A Right to a Human Decision, 105 VA. L. REV. 611 (2020); Eugene Volokh, Chief Justice Robots, 68 DUKE L. J. 1135 (2019); Andrea L. Roth, Trial by Machine, 104 GEO. L.J. 1245 (2016).
largely in major metropolitan areas.35 According to a recent report by two media justice advocacy organizations, all but four states have apparently adopted some kind of risk assessment tool in sentencing decisions.36 More than half of the states use some form of algorithmic tool for purposes of parole decision-making.37 The federal government has recently announced an algorithmic tool for parole decisions: Prisoner Assessment Tool Targeting Estimated Risk and Needs (PATTERN).38 The PATTERN system was developed in response to the First Step Act of 2018, which called for the use of risk assessment in federal parole decisions.39 Similarly, some state statutes encourage or require the use of these algorithmic tools,40 while others are selected at the discretion of state or local officials.41

36 National Landscape, MAPPING PRETRIAL INJUSTICE, https://pretrialrisk.com/national-landscape/ (last visited Feb. 10, 2020). Just six years ago, it was reported that only twenty states used such tools. See Sonja Starr, Evidence-Based Sentencing and the Scientific Rationalization of Discrimination, 66 STAN. L. REV. 803, 809 (2014). Federal courts, meanwhile, must consider the Sentencing Guidelines, which set out suggested sentence ranges for federal offenses depending on a variety of factors—a somewhat crude, if older and nondigital style of algorithm. See U.S. SENTENCING GUIDELINES MANUAL (U.S. SENTENCING COMM’N 2018); see also Kimbrough v. United States, 552 U.S. 85, 108-09 (2007) (noting that the Sentencing Guidelines are advisory but nonetheless should play a “key role” in judges’ considerations).

37 BERNARD E. HARCOURT, AGAINST PREDICTION: PROFILING, POLICING, AND PUNISHING IN AN ACTUARIAL AGE 77 (2007) (noting twenty-eight states were using an algorithmic risk assessment tool for parole decision-making as of 2004).

39 See NAT’L INST. OF JUSTICE, U.S. DEPT’ OF JUSTICE, 2020 REVIEW AND REVALIDATION OF THE FIRST STEP ACT RISK ASSESSMENT TOOL 1-4 (2021), https://www.ojp.gov/pdffiles1/nij/256084.pdf (discussing First Step Act of 2018, Pub. L. No. 115-100, 352.007(3)(a) (2019) (“Sentencing judges shall consider the results of a defendant’s risk and needs assessment included in the presentence investigation”); OHIO REV. CODE ANN. § 5120.114(A) (2019) (allowing for the use of a risk assessment tool by a variety of adjudicatory bodies in the criminal justice system); OKLA. STAT. tit. 22, § 988.18 (2019) (requiring courts to use a risk assessment tool in determining an offender’s eligibility for a sentence of community service); 42 PA. CONS. STAT. § 2154.7 (2019) (requiring the Pennsylvania Commission on Sentencing to adopt a risk assessment tool to “be used as an aide in evaluating the relative risk that an offender will reoffend and be a threat to public safety”); W. VA. CODE § 62-12-6(a)(2) (2019); see also ARIZ. CODE OF JUDICIAL ADMIN. § 6-201.01(J)(3) (2016) (“For all probation eligible cases, presentence reports shall [] contain case information related to criminogenic risk and needs as documented by the standardized risk assessment and other file and collateral information.”).

As best we can determine, only one jurisdiction (Pennsylvania) has implemented any risk assessment tool in criminal justice that is based on machine learning.\(^{42}\) Despite somewhat frequent claims to the contrary in the popular media,\(^{43}\) the remaining algorithmic tools appear all to be based on standard indices or conventional logistic regression models—not machine-learning algorithms.

For example, one of the more popular nonlearning algorithmic tools for bail decisions, the Arnold Foundation’s Public Safety Assessment, considers nine factors: the defendant’s age, the current violent offense, pending charges at the time of the offense, prior misdemeanor, felony, and violent convictions, prior failure to appear in the past two years and prior to the past two years, and prior sentences to incarceration. It then weighs these factors in varying proportions to determine scores from one to six that predict the defendant’s likelihood of failure to appear in court, new criminal activity, and new violent criminal activity, which a court can use in determining whether to grant a defendant pretrial release.\(^{44}\)

Another nonlearning algorithmic tool, known as the Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), has been adopted by several state court systems for pretrial decisions. It involves an extensive questionnaire that covers issues such as the defendant’s prior criminal history, compliance with probation, substance abuse, relationships with others who have been arrested or sent to jail, home and work environment, and personality.\(^{45}\) The algorithm uses these data points to place the defendant along several “risk scales” purporting to predict the defendant’s relative likelihood of pretrial failure (including failure to appear and new felony arrest after pretrial release) and recidivism.\(^{46}\) Judges deciding whether to approve a defendant for pretrial release or analyzing the appropriate sentence to set can then take the values reached by these

\(^{42}\) See Richard Berk, An Impact Assessment of Machine Learning Risk Forecasts on Parole Board Decisions and Recidivism, 13 J. EXPT. CRIM. 193 (2017). And technically this use in Pennsylvania is by an agency, not a court: the Pennsylvania Board of Probation and Parole. Another state, Maryland, has apparently looked into using machine learning for parole, but does not appear to have implemented it.

\(^{46}\) PRACTITIONER’S GUIDE TO COMPAS CORE, supra note 45.
algorithms into account in their determinations.47 For instance, the New York Appellate Division recently reversed the New York State Board of Parole’s decision to deny an inmate release on parole, finding that the decision was “irrational[] bordering on impro[per]”—in part by looking to the inmate’s COMPAS risk assessment, which labeled him “‘low’ for all risk factors.”48

A third basic algorithmic tool, LSI-R (Level of Service Inventory-Revised), also aims to predict a defendant’s risk of recidivism by weighing a number of factors. These factors include criminal history, educational and employment background, financial, mental, and familial state, substance abuse, and other personal details.49

In addition to these three examples, some states have also adopted their own unique risk assessment algorithms.50 But yet again, simply to be clear, these are not artificial intelligence \textit{per se}: These statistical models develop formulas by studying large data sets, and then apply those formulas to the inputs they are given for each defendant, rather than engaging in autonomous inductive “learning” to figure out what scores to give defendants.

Despite their increasing use by criminal courts, algorithmic risk assessment tools have not avoided scrutiny. Some scholars, lawyers, and concerned citizens challenge the lack of transparency behind some of these algorithms, as some of them are created by private consultants who claim commercial secrecy protection

49 For instance, the Rhode Island Department of Corrections has adopted this test. See R.I. DEP’T OF CORRS., \textit{supra} note 41. Courts in other states have also adopted some version of the LSI-R, including California, Colorado, Delaware, Hawaii, Iowa, Oklahoma, and Washington. \textit{See Algorithms in the Criminal Justice System, supra note 45.}

to avoid disclosure.51 The State of Idaho, in fact, passed a law last year that requires that all pretrial risk assessment tools be transparent, compelling the builders of these tools to make their algorithms’ inputs open to public inspection and allow criminal defendants to request access to the calculations and data that determine their risk assessment scores.52

Even when the parameters used in the analysis are publicly known, the owners of the risk assessment system will often decline to explain how exactly the factors that go into assessing an individual’s likelihood of recidivism or pretrial misbehavior are weighted.53 As Judge Noel Hillman of the District of New Jersey has put it, “[a] predictive recidivism score may emerge oracle-like from an often-proprietary black box. Many, if not most, defendants . . . will lack the resources, time, and technical knowledge to understand, probe, and challenge” the use of these tools.54 However, a widely discussed 2016 ProPublica investigation reported that the COMPAS tool systematically found Black defendants to be at a higher risk of recidivism than similarly situated white defendants and that twice as many Black defendants designated as high-risk never actually recidivated compared with high-risk white defendants who never recidivated,55 raising significant questions about

\begin{footnotes}
\item[52] \textsc{idaho code} § 19-1910 (2019).
\item[53] See, e.g., Noel L. Hillman, \textit{The Use of Artificial Intelligence in Gauging the Risk of Recidivism}, AM. BAR ASS’N (Jan. 1, 2019), https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/winter/the-use-artificial-intelligence-gauging-risk-recidivism/ (“[P]redictive technology becomes another witness against the defendant without a concomitant opportunity to test the data, assumptions, and even prejudices that underlie the conclusion.”). Some have raised concerns about the secrecy that the creators of these risk assessment tools maintain over the inner workings of their products:

No one knows exactly how COMPAS works; its manufacturer refuses to disclose the proprietary algorithm. We only know the final risk assessment score it spits out . . . Something about this story is fundamentally wrong: Why are we allowing a computer program, into which no one in the criminal justice system has any insight, to play a role in sending a man to prison?

Israni, \textit{supra} note 47; see also Deirdre K. Mulligan & Kenneth A. Bamberger, \textit{Procurement as Policy: Administrative Process for Machine Learning}, 34 BERKELEY TECH. L.J. 781, 786 (2019) (noting that “government agencies purchasing and using [algorithmic] systems most often have no input into—or even knowledge about—their design or how well that design aligns with public goals and values” and “know nothing about the ways that the system models the phenomena it seeks to predict, the selection and curation of training data, or the use of that data”). For a discussion of how governments can overcome the propensity of contractors to want to protect the secrecy of their AI systems, see Cary Coglianese & Erik Lampmann, \textit{Contracting for Algorithmic Accountability}, 6 ADMIN. L. REV. ACCORD 175 (2021).
\item[55] See Julia Angwin et al., \textit{Machine Bias}, \textsc{ProPublica} (May 23, 2016), https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing; see also Israni, \textit{supra} note 47; Liptak, \textit{supra} note 47; Ed Yong, \textit{A Popular Algorithm Is No Better at
the wisdom of integrating algorithms into judicial decision-making. A recent study by economists Megan Stevenson and Jennifer Doleac, meanwhile, found that the use of an algorithmic risk assessment tool by Virginia state court judges failed to lower incarceration or recidivism rates and that racial disparities in sentencing increased in the courts that most relied on the tool.

To date, the courts have only started to grapple with the legal implications of these algorithmic tools. Most prominently, in *State v. Loomis*, a defendant in Wisconsin state court challenged the state’s use of the COMPAS algorithm at his sentencing after he pled guilty. Loomis’s COMPAS risk scores indicated that he had a high risk of recidivism; at sentencing, the court relied in part on the fact that he had been “identified, through the COMPAS assessment, as an individual who is at high risk to the community.”

In a post-conviction challenge to his sentence, Loomis argued that using the risk assessment violated his due process rights (1) to be sentenced based upon accurate information; (2) to receive an individualized sentence; and (3) to avoid being sentenced on the basis of his gender. The trial court denied the motion, holding that it had “used the COMPAS risk assessment to corroborate its findings and that it would have imposed the same sentence regardless of whether it considered the COMPAS risk scores,” and the Wisconsin Supreme Court affirmed.

The Wisconsin Supreme Court rejected Loomis’s due process challenges, noting that the variables that the COMPAS algorithms used were publicly available and that the risk assessment’s outcome was based fully on either the defendant’s answers to the questions or on publicly available information about his criminal history. As a result, the use of COMPAS complied with due process, since the defendant had the “opportunity to verify that the questions and answers listed on

58 For instance, one D.C. juvenile court judge found that a risk assessment tool intended to predict a defendant’s risk of future violence was inadmissible at sentencing, in part because some of the factors it considered reflected and amplified racial disparities; however, the judge limited his holding so it only prohibited the algorithm’s use in that particular case. See AI NOW INST., LITIGATING ALGORITHMS 2019 REPORT 9-10, 29 (2019), https://ainowinstitute.org/litigatingalgorithms-2019-us.pdf.

59 881 N.W.2d 749 (Wis. 2016).

60 *Id.* at 755.

61 *Id.* at 757.

62 *Id.*

63 *Id.* at 761.
the report were accurate." The court further held that, although the use of risk assessment tools did involve group data, its inclusion among a mix of factors still achieved an individualized sentence for the defendant. Finally, the inclusion of gender in the COMPAS algorithm’s analysis did not violate any due process rights absent any proof that the court actually relied on gender as a factor in sentencing, since the algorithm simply accounted for differences in recidivism rates between men and women.

Loomis appealed to the United States Supreme Court. The Court invited the Solicitor General to weigh in, often a sign that the Court recognizes the potential significance of the case. The Solicitor General’s Office argued that the Court should not grant the petition, noting that no division of authority yet existed on the validity of these algorithms and asserting that “[t]he issues that this petition raises . . . would benefit from further percolation. Most of the developments related to the use of actuarial risk assessments at sentencing have emerged within the last several years.” Ultimately, the Court declined to take up the case, leaving the issue of a defendant’s due process rights when confronted with a risk assessment algorithm still to be settled by the nation’s highest court.

Other litigation, though, has continued to proceed in various state courts. In Malenchik v. State, for example, the defendant, who had pled guilty to a felony and admitted to being a habitual offender, challenged the trial court’s use of the results

64 Id.
65 Id. at 764-65. However, the Wisconsin Supreme Court warned lower courts to be careful given the group-based nature of the COMPAS assessment. Id. An appellate court in Michigan reached the same basic holding on a similar due process argument: It found that because a trial court is not bound by a risk assessment tool’s recommendations at sentencing and determines how heavily or lightly to weigh those recommendations, and because a risk-assessment report that incorporates information about the population at large is “similar to the opinions of probation agents that are routinely” considered at sentencing, the use of COMPAS does not violate a defendant’s right to an individualized sentence. People v. Younglove, No. 341901, 2019 WL 846117, at *3 (Mich. Ct. App. Feb. 21, 2019) (per curiam).
66 Loomis, 881 N.W.2d at 765-67.
69 See Loomis v. Wisconsin, 137 S. Ct. 1240 (2017). For discussions of the role of the Solicitor General in influencing the Court’s docket and merits decision, see, for example, Ryan C. Black & Ryan J. Owens, Solicitor General Influence and Agenda Setting on the U.S. Supreme Court, 64 POL. RES. Q. 765, 766 (2011) (“[W]e find strong support for SG influence. Justices who completely disagree with the SG nevertheless follow her recommendations 35 percent of the time, a number we take to be powerful evidence of influence.”); Margaret Meriwether Cordray & Richard Cordray, The Solicitor General’s Changing Role in Supreme Court Litigation, 51 B.C. L. REV. 1323, 1324 (2010) (“The U.S. Solicitor General, as the U.S. Supreme Court’s premier advocate, has long exerted significant influence over both the Court’s case selection decisions and its substantive decisions on the merits.”).
of two risk assessment tests (one of which was the LSI-R) in determining his sentence. The tests’ results indicated that Malenchik was at high risk of recidivism. The Indiana Supreme Court emphasized that the sentence had been based on factors other than the risk assessments, since the trial court had also relied on the Malenchik’s prior criminal history and refusal to accept responsibility for his actions and change his behavior, and it had not used the algorithm’s output as an independent aggravating factor. The court noted that such tools are neither “intended nor recommended to substitute for the judicial function of determining the length of sentence,” but are instead “significant sources of valuable information for judicial consideration in deciding whether to suspend all or part of a sentence, how to design a probation program for the offender, whether to assign an offender to alternative treatment facilities or programs, and other such corollary sentencing matters.” As a result, the Indiana Supreme Court held that a trial court can properly “supplement and enhance” its evaluation of the evidence before it at sentencing by considering the results of a risk assessment, which can “provide usable information based on extensive penal and sociological research to assist the trial judge in crafting individualized sentencing schemes with a maximum potential for reformation.”

Another case, State v. Walls, addressed a defendant’s right to access a risk assessment tool used during sentencing. The defendant Walls received a LSI-R score indicating that he was a “high-risk, high-needs probation candidate.” The trial court decided, “based on this assessment,” to sentence him to probation supervised by community correctional officers, rather than by court services. Although the defendant’s counsel asked the court to share the LSI-R assessment report, the court refused to do so. In addition to holding that this refusal contravened Kansas law and was an abuse of discretion, the Kansas Court of Appeals found that the trial court had violated the defendant’s due process rights, since depriving him of the LSI-R report “necessarily denied him the opportunity to challenge the accuracy of the information upon which the court was required to rely in determining the conditions of his probation.” Since a defendant has a right to an “effective opportunity to rebut the allegations likely to affect the sentence,” the trial court’s withholding of the output of the risk assessment tool on which it had relied in setting Walls’ sentence deprived him of due process.

Meanwhile, yet another case, State v. Rogers, has raised the question of whether a court’s failure to use a risk assessment tool in sentencing a defendant contravened his due process rights. The Supreme Court of Appeals of West Virginia

72 928 N.E.2d 564, 566-67 (Ind. 2010).
73 Id.
74 Id. at 568.
75 Id. at 573.
76 Id. at 573-75.
78 Id.
79 Id.
80 Id.
81 Id. at *4.
82 Id. at *2, *4 (quoting State v. Easterling, 213 P.3d 418, 425-26 (2009)).
rejected the claim because the defendant failed to enter a proper objection at the
time of initial sentencing. But Justice Loughry, in a separate concurring opinion,
argued that a risk assessment algorithm is “merely a tool that may be used by [trial
court] judges during sentencing,” a process over which judges have broad
discretion and that courts are under no obligation to use it.

In addition to these cases, in a few other criminal appeals defendants have
questioned whether prosecutors must disclose the results of algorithmic facial
recognition or risk assessment tools to defense counsel as part of their duty to turn
over exculpatory evidence under Brady v. Maryland. The courts that have handled
these cases have avoided delving into issues concerning the algorithmic nature of
any of the particular tools, since they concluded either that the tools were not
actually used in prosecuting the defendant or that the failure to disclose their use
did not prejudice the defendant.

Finally, in People v. Wakefield, a defendant challenged the admissibility of
the DNA matching software used to convict him. After law enforcement collected
a sample of his DNA, a private company ran it through software that compared the
defendant’s DNA to a sample from the scene of the crime using an algorithm that
relied on “a certain degree of artificial intelligence.” The defendant objected to
his lack of access to the algorithm’s source code, claiming that it violated his Sixth
Amendment right to confront witnesses against him. Although the Appellate
Division concluded that the report reflecting the algorithm’s match between the two
DNA samples was testimonial, since the analysis was conducted to further law
enforcement goals, it held that the source code was not a declarant and rejected the
defendant’s Confrontation Clause argument. The court acknowledged that it
might be possible for an artificial intelligence tool to be a declarant independent of
its human creator, since such algorithms involve “distributed cognition between
technology and humans,” but it ultimately found that the system at issue operated
under sufficient human input and supervision that the true speaker behind the report
was the algorithm’s author.

Although it is still early in the judiciary’s assessment of legal issues
surrounding courts’ use of algorithmic tools, it seems noteworthy that, in all the
cases decided to date that have actually wrestled with these issues, courts appear to
have taken pains to emphasize that such tools only serve as one of multiple factors
that a human judge takes into account in reaching a decision. Perhaps this suggests
that, as long as humans remain in the loop, whether with standard algorithmic tools

84 For a discussion of these appeals, see AI Now Inst., supra note 58, at 30. The Supreme Court’s
decision in Brady v. Maryland can be found at 373 U.S. 83 (1963).
87 Id. at 160-62.
88 Id. at 165. The Confrontation Clause prohibits introduction of out-of-court testimonial statements
against a defendant unless the declarant is unavailable and the defendant has had a prior opportunity
to cross-examine that person. Id. at 168 (citing People v. John, 27 N.Y.3d 294, 303 (2016), and
Bullcoming v. New Mexico, 564 U.S. 647, 657 (2011)).
89 Id. at 168-69.
90 Id. at 169-70.
or even with machine-learning algorithms, courts’ reliance on algorithms will continue to win approval.91

\textbf{C. Online Dispute Resolution}

Online Dispute Resolution (ODR) has emerged in recent years as a tool for resolving disagreements among parties using technology, growing in part out of prior developments in the field of Alternative Dispute Resolution (ADR). ADR is a term that refers to a range of methods such as mediation and arbitration that aim to settle disputes without the use of litigation and the court system.92 ODR mechanisms first mimicked ADR approaches to conflict resolution before evolving into their current forms, which harness the advantages of technology to aid their mission.93

The initial growth of ODR has been largely driven by the private sector.94 Most notably, eBay and PayPal have developed ODR systems to handle the millions of disputes that regularly arise on their platforms from and among users.95 Realizing that they could not afford to hire enough human mediators to resolve all of these disputes or arrange for parties to videoconference with each other, these companies leveraged the extensive amounts of data they had collected on consumer behavior and usage.96 Their ODR systems aim to prevent or amicably resolve as many disputes as possible and to decide the remainder quickly. To do so, they generally first diagnose the problem, working directly with the complainant; they then move to direct negotiations (aided by technology) and ultimately allow the company to decide the case if the parties are not able to amicably resolve matters on their own.97 As the success of these systems inspired other firms to develop

\begin{flushleft}
91 See, e.g., Malenchik, 928 N.E.2d at 568 (“[T]he trial court’s sentencing decision was clearly based on factors apart from the defendant’s LSI-R and SASSI results. . . . The trial judge did not rely on either the LSI-R or SASSI as an independent aggravating factor in deciding to impose more than the advisory sentence.”). \textit{See generally} Melissa Hamilton, Risk-Needs Assessment: Constitutional and Ethical Challenges, AM. CRIM. L. REV. 231 (2015); Roger K. Warren, Evidence-Based Sentencing: The Application of Principles of Evidence-Based Practice to State Sentencing Practice and Policy, 43 U.S.F. L. REV. 585 (2009).
93 See Katsh & Rabinovich-Einy, supra note 92; Online Dispute Resolution I, supra note 92.
94 \textit{See Online Dispute Resolution I, supra note 92}.
95 See Barton & Bibas, supra note 24, at 111 (2017); Katsh & Rabinovich-Einy, supra note 92, at 34-35.
96 Barton & Bibas, supra note 24, at 111; Katsh & Rabinovich-Einy, supra note 92, at 34-35.
97 Colin Rule & Amy J. Schmitz, The New Handshake: Online Dispute Resolution and the Future of Consumer Protection 37 (2017) (“Each stage acted like a filter, with the objective being to minimize the flow of cases that made it to the end.”); \textit{see also} Barton & Bibas, supra note 24, at 111-115; Katsh & Rabinovich-Einy, supra note 92, at 34-36. We note that Colin Rule helpfully describes the stages of an ODR process using the “DNMEA” mnemonic: Diagnosis, Negotiation, Mediation, Evaluation, and Appeal.
\end{flushleft}
similar and increasingly sophisticated programs, algorithms have become a more prominent dispute resolution solution, allowing companies to automate away many (if not all) of the steps of decision-making process. For example, Amazon has developed algorithms that can resolve a consumer complaint about a defective product without requiring any human intervention.

Some courts have also begun experimenting with ODR as a mechanism to attempt to resolve lawsuits without requiring the use of judicial decision-making. Although much of the innovation in this area has occurred in other parts of the world, dozens of state and local courts in the United States, including in Michigan, Ohio, California, and Utah, have adopted some form of “court ODR” in cases involving small claim civil matters, traffic violations, outstanding warrant cases, and low-conflict family court cases. What counts as an ODR system can vary from a simple website that facilitates entering pleas for traffic tickets online to an online portal for engaging in asynchronous negotiations. These are not mandatory systems in any jurisdiction of which we are aware, but instead they are offered as an option to avoid appearing in court. In jurisdictions with these systems, parties are notified of the ODR option via mailings or websites. Parties can access the ODR system at any time, and with the more interactive systems they can communicate and negotiate with each other, obtain legal information and suggested resolutions from the system, and easily manage electronic documents—all without having to see the inside of a courtroom. These systems can usually reach resolution in a dispute faster and at lower cost to the parties and are far more accessible than traditional court-centered adjudication.

ODR provides an emerging avenue for litigants and courts to engage in dispute resolution outside of the presence of a courtroom and absent a human judge. Court ODR systems, as well as the private-sector iterations that inspired them, have increasingly adopted automated processes and rely on algorithmic tools to aid in reaching what some observers characterize as fair and low-cost solutions to the parties’ disputes. As some researchers have already begun to note, court systems

99 Id. at 48.
102 Katsh & Rabinovich-Einy, supra note 92, at 161-62; Online Dispute Resolution II, supra note 100.
103 Online Dispute Resolution II, supra note 100.
104 Online Dispute Resolution I, supra note 92.
105 Katsh & Rabinovich-Einy, supra note 92, at 163 (“The use of ODR in courts is also introducing algorithms into the judicial decision-making process.”); Loïc E. Coutelier, The New Frontier of Online Dispute Resolution: Online Divorce Mediation, AM. BAR ASS’N (Apr. 1, 2016), https://www.americanbar.org/groups/young_lawyers/publications/tyl/topics/dispute-resolution/new-frontier-online-dispute-resolution-online-divorce-mediation/ (discussing a form of
II. ARTIFICIAL INTELLIGENCE IN THE ADMINISTRATIVE STATE

In contrast with the nascent digitization efforts that might eventually move in the direction of AI use by the courts, administrative agencies have long pursued the use of information technology to support vital services and programs. Even outside of the military, intelligence-gathering, and space exploration contexts, computers have been used for decades by government agencies to support administration and data management for various tasks, including tax collection and the operation of large national benefits programs such as Social Security and Medicare. The technologies used by government have tended to lag behind those deployed in the private sector. Federal and state agencies relied on mainframe computers, for example, long after the personal computer revolution hit the private sector in the 1980s, and they continue to remain behind the innovation curve to this day. Many government computer systems have grown quite antiquated. As of 2016, auditors could report that three-quarters of annual federal spending on computer technology in the United States is devoted to “legacy systems” which “are becoming increasingly obsolete” due to “outdated software languages and hardware parts that are unsupported.”

Still, the internet revolution in the 1990s did prompt state and federal government agencies to begin to digitize many of their services and make greater use of the worldwide web. Initially, of course, the movement was slow. According to one survey, by the year 2000, states had websites containing an average each of only about four automated or online governmental services. The most popular such digitized service at that time was applying for a state government job (which was available in thirty-two states). The second most popular was electronic filing of income taxes (twenty-four states) and the third most popular was the online

ODR used in divorce mediation that relies on “an innovative algorithm that uses game theory negotiation to maximize the return for divorcing couples who are dividing assets”).

106 See generally Arno R. Lodder & John Zeleznikow, Artificial Intelligence and Online Dispute Resolution, in ONLINE DISPUTE RESOLUTION: THEORY AND PRACTICE 73-94 (Mohamed S. Abdel Wahab et al. eds., 2012).

111 Id.
renewal of drivers licenses (seventeen states).\footnote{112} Today, all states have these basic services digitized—and many more services as well.

The federal government adopted the E-Government Act of 2002 “to develop and promote electronic Government services and processes” and “[t]o promote use of the Internet and other information technologies to provide increased opportunities for citizen participation in Government.”\footnote{113} That law established a federal Office of Electronic Government, imposed a duty on all federal agencies to make vast quantities of government information available online, and generally to accept online submissions of public comments on proposed regulations.\footnote{114} The federal government has since created portals such as Regulations.gov and Data.gov to make available online massive amounts of information previously housed in paper records or internal government computers.\footnote{115}

Today, the United States is regarded as among the nations that have made considerable progress in implementing practices of e-government. According to the latest e-government ranking by the United Nations, the United States places ninth among all countries for “e-government development.”\footnote{116} It also ranks first in the world for “e-participation,” tied with Estonia and the Republic of Korea.\footnote{117}

These rankings suggest that, even if administrative agencies in the United States may have been slower out of the starting gate than the private sector in their use of information technology, they appear ahead of many counterpart governments elsewhere in the world. They have also moved to digitize their operations and services much earlier than has the U.S. court system. In this respect, administrative agencies are well along a path that will support greater use of machine learning.

Some agencies have undertaken focused efforts to make data more easily accessible for use in machine-learning applications. For example, officials at the Federal Deposit Insurance Corporation have expressly focused on developing “the back-end disciplines of in-memory analytics, big data, and data quality.”\footnote{118} Staff at the Federal Communications Commission (FCC) established a Data Innovation Initiative with similar goals.\footnote{119} Financial regulators have worked to create a dedicated “legal entity identifier” to be able to link disparate transactional and other data to the corresponding business entities.\footnote{120} The Environmental Protection

\footnote{112} Id.

\footnote{114} Id. § 3602.

\footnote{117} Id. at 120.

\footnote{120} See Matthew Reed, Legal Entity Identifier System Turns a Corner, FinResearch.gov: From the Management Team (July 3, 2014), https://financialresearch.gov/from-the-management-team/2014/07/03/legal-entity-identifier-system-turns-a-corner/.

21
Agency has built databases that can be used to train algorithms, while the Food and Drug Administration has tapped into cloud storage capacity to give the agency the ability to analyze Big Data.

Beyond these data-centered building blocks to artificial intelligence, U.S. administrative agencies are generally light-years ahead of the U.S. judicial system in terms of employing algorithmic tools. After all, algorithmic tools of the traditional statistical kind have long been a staple of administrative decision-making, especially when these agencies set policies and regulations. Some government agencies, such as the U.S. Department of Commerce, even count data collection and analysis as among their principal responsibilities. As a result, it is also not surprising that administrative agencies are ahead of the courts in terms of their use of full-fledged machine-learning tools, something that the courts have yet to deploy. Admittedly, the use of machine learning within administrative agencies is not yet as extensive as it is in the private sector, but artificial intelligence is beginning to emerge to assist with important administrative functions—even though, again, we know of no example where artificial intelligence has fully replaced human decision-making.

We also know of no comprehensive survey of all uses of machine learning by administrative agencies at both the state and federal levels. In 2020, however, a team of researchers from Stanford University and New York University (NYU) completed a multi-year effort, involving more than two dozen researchers with backgrounds in law and computer science, to survey the use of machine learning by the federal government and develop a series of case studies. The research team looked carefully through a broad range of public sources in search of references to possible machine-learning uses at about 140 of the largest federal

123 For more recent discussions of the use of algorithmic analysis in public administration, see generally, for example, ROBERT D. BEHN, THE PERFORMANCE STAT POTENTIAL: A LEADERSHIP STRATEGY FOR PRODUCING RESULTS (2014); DONALD F. KETTL, LITTLE BITES OF BIG DATA FOR PUBLIC POLICY (2018); MONEYBALL FOR GOVERNMENT (Jim Nussle & Peter Orszag eds., 2014).
125 DAVID FREEMAN ENGSTROM, DANIEL E. HO, CATHERINE M. SHARKEY & MARIANO-FLORENTINO CUÉLLAR, GOVERNMENT BY ALGORITHM: ARTIFICIAL INTELLIGENCE IN FEDERAL ADMINISTRATIVE AGENCIES (2020), https://www-cdn.law.stanford.edu/wp-content/uploads/2020/02/ACUS-AI-Report.pdf. In the early part of this century, the federal General Accountability Office (GAO) conducted a survey of more than 125 federal agencies and reported that 52 relied on some form of “data mining,” which the GAO defined broadly “as the application of database technology and techniques—such as statistical analysis and modeling—to uncover hidden patterns and subtle relationships in data and to infer rules that allow for the prediction of future results.” U.S. GEN ACCOUNTABILITY OFFICE, GAO-04-548, DATA MINING: FEDERAL EFFORTS COVER A WIDE RANGE OF USES 4 (2004). The GAO did not report whether any of these applications relied on machine learning rather than traditional analytic tools.
agencies, yielding a total of 157 “use cases” at 64 agencies involving some reliance on artificial intelligence or machine learning algorithms. However, these examples were not distributed evenly across agencies. The Securities and Exchange Commission, for example, had ten distinct use cases, while about half of the agencies in the study had none. Furthermore, when team members with computer science backgrounds looked closely at each use, they could find only about twelve percent that could be ranked as having a higher level of sophistication, suggesting that “[w]hile the deep learning revolution has rapidly transformed the private sector, it appears to have only scratched the surface in public sector application.”

In a potentially promising sign, however, most of the algorithms the researchers discovered had been developed internally by staff at the agencies rather than by private contractors, reflecting a “substantial creative appetite within agencies.”

Finally, the Stanford-NYU team appeared not entirely confident that all of the use cases they found actually entailed full machine learning systems, as they reported “some degree of puffery amongst agencies when they describe the adoption of machine learning and AI tools.” For a majority of the use cases, a lack of publicly available documentation rendered the team unable to determine the exact nature of the methods that the algorithms deployed.

The precise stage of implementation varied among use cases, as only fifty-three use cases, roughly one-third of the total, were fully deployed, while the rest remained in the planning or piloting stages or were only partially deployed. Still, the Stanford-NYU team’s finding of 157 use cases across the federal government at least suggests a plausible upper bound of the current extent of uses of machine learning at the federal level. Obviously, still more uses exist at the state and local government level. We cannot purport to chronicle all instances of administrative machine learning in this article, but instead we provide a range of examples to convey the variety of uses to which machine learning is being put by various agencies throughout the United States.

It is revealing that, among the use cases the Stanford-NYU team identified, roughly one-third were devoted to enforcement targeting—that is, helping to identify cases of possible fraud or regulatory violations for human auditors or inspectors to follow up and investigate. The research team also found that the

126 The researchers searched for the use of algorithms at 142 of the largest federal agencies with at least 400 full-time equivalent employees. ENGSTROM ET AL., supra note 125, at 15. The researchers were not able to assess algorithmic sophistication for the vast majority of the use cases. Id. at 20. For the roughly 40% of the tools for which they could make a determination, they coded roughly equal shares as falling in the “lower,” “medium,” and “higher” ranges of sophistication, with about 20 use cases in each category. Id.

127 ENGSTROM ET AL., supra note 125, at 16. The researchers found that only 64 of the 142 agencies (45%) had even a single use of an algorithmic tool. Id.

128 See supra note 126.

129 ENGSTROM ET AL., supra note 125, at 20.

130 Id. at 20.

131 Dan Ho, Remarks at the 71st Plenary Session of the Administrative Conference of the United States (June 13, 2019) (transcript on file with authors).

132 ENGSTROM ET AL., supra note 125, at 20.

133 Id. at 18.

134 Id. at 17.
policy area with the most frequent use of AI was law enforcement, which made up roughly one-fifth of the total use cases.\footnote{Id.} We thus first proceed in the next section to provide illustrative instances of machine learning used in the context of enforcement. We then proceed with examples in government services and program administration. Finally, we turn to a discussion of some of the merits, controversies, and legal issues surrounding the use of artificial intelligence in the administrative setting. Our discussion throughout both sections includes examples of machine learning at the federal, state, and local levels of government.

A. Enforcement

It is a common refrain that administrative agencies have more problems to deal with than they have resources to devote to solving them. Perhaps nowhere could this be more accurate than in the context of administrative enforcement. Agencies have a limited number of auditors, inspectors, and other enforcement personnel who must oversee a vast number of individuals and businesses to ensure their compliance with myriad pages of laws and regulations. The federal Occupational Safety and Health Administration, for instance, has no more than about 2,000 inspectors who oversee more than eight million workplaces employing about 130 million workers.\footnote{Commonly Used Statistics, OCCUPATIONAL SAFETY & HEALTH ADMIN., https://www.osha.gov/oshstats/commonstats.html (last visited Nov. 20, 2019).} To deploy these limited oversight resources smartly, agencies need to know which businesses or individuals are most likely to require oversight. Machine-learning algorithms can provide forecasts of the likelihood of violations, thus helping agencies allocate resources and decide which regulated entities to target.

natural language processing to identify potential instances of insider trading, “bad apple” investment advisers or brokers, or accounting and financial reporting fraud.139 Meanwhile, the federal agency that oversees Medicare relies in part on machine-learning algorithms to help it identify possible leads for its fraud investigators to pursue.140 Federal immigration agencies have also increasingly relied on automated processes to help in identifying, monitoring, and apprehending immigrants who are unlawfully in the United States.141 A range of other agencies, including the Environmental Protection Agency, the Department of Labor, and the Consumer Product Safety Commission are currently developing or deploying algorithms to predict regulatory infractions across a variety of policy areas.142

A number of state and local law enforcement authorities use algorithmic tools—some of which appear to be based on machine learning—when deciding where to send police patrols. Starting with a widely discussed CompStat initiative in New York City in the 1990s (which was not machine-learning based), many police departments across the United States have taken a more systematic approach to allocating law enforcement resources by using performance metrics and data analysis.143

Today, this “moneyballing” effort includes both “place-based” and “person-based” predictive policing tools.144 Place-based tools help police identify areas of a city that have a greater propensity for crime and may merit greater police patrols. For example, at least a dozen or more cities using a vendor-developed software called PredPol, which uses a proprietary algorithm to identify areas of a city which are more likely to be prone to criminal activity so that additional police resources can be allocated to those areas.145 By contrast, the City of Los Angeles Police Department uses a Real-

140 Transcription, supra note 125 (statement of David Engstrom).

141 Anil Kalhan, Immigration Policing and Federalism Through the Lens of Technology, Surveillance, and Privacy, 74 OHIO ST. L. REV. 1105, 1122-34 (2013); see also ENGSTROM ET AL., supra note 125, at 30-36.

142 ENGSTROM ET AL., supra note 125, at 27.

143 By the end of the 1990s, a third of the largest police departments in the United States reported using a program like Compstat. DAVID WEISBURD ET AL., POLICE FOUNDATION REPORT: THE GROWTH OF COMPSTAT IN AMERICAN POLICING(April 2004), http://glen.nos.edu/faculty/glen-faculty/worley/June%202004%20%20Reading%20American%20Policing.pdf.

Time Analysis Critical Response (RACR) system and the New York City Police Department uses a machine learning tool called Patternizr. These tools are person-based—that is, they integrate information, detect patterns in crime incidents, and find links between incidents in an effort to identify alleged perpetrators. Meanwhile, dozens of cities, including New York and Milwaukee, are using a tool called ShotSpotter that alerts police to the locations of shootings based on the sound of gunfire.

Recent reports indicate that the Federal Bureau of Investigation, Immigration and Customs Enforcement, the U.S. Postal Inspection Service, and hundreds of state and local law enforcement agencies are using facial recognition tools marketed by private-sector firms such as Amazon and Clearview AI in an effort to identify criminal suspects. In May 2019, the city of San Francisco became the first major U.S. city to place restrictions on law enforcement’s use of facial recognition and other surveillance tools. In light of heightened concerns about racial discrimination by law enforcement officers, a number of technology companies, including Apple, Microsoft, and IBM, announced in June 2020 that they would halt sales of their facial recognition technologies modification and differ in their details, they share a common premise: through smart policies, law enforcement can affirmatively prevent crime from happening, rather than just solve it.”

to police departments.150 Although a number of other providers have continued to offer such tools to law enforcement agencies,151 a growing number of cities such as Boston, Minneapolis, San Francisco, Oakland, and Portland have enacted restrictions to keep their police forces from using facial recognition technology—either in body cameras or more generally—amid heightened concerns about privacy and racial bias.152 State legislatures in Virginia, California, New York, New Hampshire, Oregon, and Vermont, too, have curbed or banned law enforcement use of facial recognition software.153 At the federal level, meanwhile, a number of police reform bills have proposed preventing federal law enforcement agencies from using facial recognition tools.154

\textit{B. Services and Program Administration}

Just as police departments in major U.S. cities have deployed machine-learning tools to assist with law enforcement efforts, cities are also using machine learning to support other key government functions.155 The New York City Fire Department, for example, follows its police counterparts in using machine-learning algorithms to allocate and target its limited number of building inspectors that check for compliance with fire-related ordinances.156 In fact, New York City has established a central Office of Data Analytics, which works to integrate data from across the city and develop “analytics tools to prioritize risk more strategically, deliver services more efficiently, enforce laws more effectively and increase transparency.”157 Other cities have similarly created special offices or teams

157 \textit{About the Office of Data Analytics}, \textit{NYC ANALYTICS}, https://www1.nyc.gov/site/analytics/about/about-office-data-analytics.page (last visited Nov. 20, 2019).
devoted to data analysis and prediction. Los Angeles has established a formal partnership, the Data Science Federation, with local colleges and universities to promote "predictive . . . analysis that will help drive data driven decision making within the city." The City of Chicago worked with a consortium of university partners to create a SmartData Platform which helps facilitate the use of machine learning in support of city services.

Cities have employed these tools for a variety of purposes. In Chicago, some of these services supported by machine-learning tools include health inspections of restaurants, with inspectors assigned based on the algorithmic forecasts of the establishments posing the greatest risks. Both Chicago and Washington, D.C., are using machine learning to optimize rodent bait placement throughout their cities. In Flint, Michigan, following a major fiasco in the management of the city’s water supply, officials have benefited from machine-learning predictions to identify priorities for replacing pipes contributing to lead contamination. In Los Angeles, traffic lights operate automatically based on a machine-learning system that optimizes for congestion avoidance using data fed by a network of sensors in the city’s streets. Pittsburgh has also adopted an AI-driven tool that cut vehicle travel time by twenty-five percent by optimizing the city’s traffic light system in real time. Johnson County in Kansas has used algorithmic determinations of risk to determine how to allocate its social service counselors and mental health

professionals. Allegheny County in Pennsylvania has relied on machine learning in developing a predictive tool to help screen the many phone referrals made to the county’s child protective services hotline for risk of future abuse or neglect and help inform decisions about which complaints merit further intervention. Georgia is developing a “smart highway” system that will use data obtained from vehicles with smart sensors to detect weather and road conditions and share that information with other drivers and roadway operators to reduce traffic and prevent car accidents.

The Data-Smart City Solutions initiative at Harvard University’s John F. Kennedy School of Government has cataloged sixty-four uses of data analytics by local governments, some but not all involving machine learning. Its list includes tasks as varied as identifying children who could benefit from mentoring programs, prioritizing trees for trimming, and identifying businesses that might be underpaying taxes. Meanwhile, the Penn Program on Regulation’s Optimizing Government project has chronicled other local government efforts either to adopt or study the possibility of using machine learning or other predictive analytics tools to aid with a wide range of purposes, including early intervention academic support for public school students; detection of problems with water infrastructure, waste, and pollution; economic blight prevention; crime forecasting by police departments and detection of risks to police officers from interactions with members of the public; and improvement of city services, public transportation, and public health.

At the federal level, too, predictive analytic tools including machine learning have been put to varied uses. One of the earliest uses of machine learning by the federal government actually helped spur innovations in the technique: the

168 LEE, supra note 165, at 26-29.
170 Id.
171 Uses in Government, infra note 6. We acknowledge, however, that descriptive materials available on these various uses do not always make it entirely clear which of these efforts involved actual machine learning versus other kinds of predictive analytic techniques. For example, although a 2017 survey of local governments by the National League of Cities indicated that sixty-six percent of local governments have invested in “smart city” technologies, many of these uses include applications that likely do not involve machine-learning algorithms in assisting with government decisions, such as “Wifi kiosks” and “E-governance applications.” NICOLE DUPUIS & BROOKS RAINWATER, NAT’L LEAGUE OF CITIES, CITIES AND THE INNOVATION ECONOMY: PERCEPTIONS OF LOCAL LEADERS 14 (2017), https://www.nlc.org/wp-content/uploads/2017/10/NLC_CitiesInnovationEconomy_pages1.pdf.
U.S. Postal Service’s use of artificial intelligence to support automatic handwriting detection and mail sorting. In addition, scientists at the National Oceanic and Atmospheric Administration have relied on machine learning for weather forecasting. Risk analysts at the Environmental Protection Agency have used machine learning to forecast the likelihood that certain chemicals are toxic and need further study and management. The Food and Drug Administration has employed machine learning to extract information from adverse event reports about drugs. Similarly, the Bureau of Labor Statistics uses machine learning to code survey results about workplace injuries, and the Consumer Financial Protection Bureau relies on natural language processing to categorize and identify patterns in consumer complaints. The Federal Communications Commission in 2014 used natural language processing to sort through and analyze millions of public comments submitted in response to its proposed net neutrality regulation. The U.S. Patent and Trademark Office is exploring how to use machine learning to identify existing literature that may be novelty-defeating “prior art” to patent applications. The Customs and Border Protection uses facial-recognition algorithms to identify people when they arrive in the United States from international airplane flights. The Social Security Administration uses a natural language processing tool based on machine learning that helps flag initial decisions adjudicating disability claims for further quality review.

177 Engstrom et al., supra note 125, at 61-62.

178 Id. at 60-61.

180 Karlan & Bankman, supra note 139 (interview with David Engstrom).

As this review of the many public sector uses of AI makes clear, local, state, and federal agencies have embraced the potential that algorithmic tools have to offer, deploying the tools in a variety of contexts to conduct their operations and provide services to the public. These uses of AI systems promise to improve aspects of governmental performance but they are also already raising a number of legal and policy issues.

C. Impacts and Issues

The principal advantages of artificial intelligence in the administrative context are similar to those in the private sector: accuracy and efficiency. Machine-learning algorithms can make more accurate forecasts that can aid in governmental decision-making. For example, researchers have shown that if the U.S. EPA were to assign its water pollution inspectors using a machine-learning algorithm in instead of just identifying facilities at random to inspect, they could increase the accuracy of finding violations of the Clean Water Act by 600 percent. A separate analysis of a machine-learning tool that could identify chemicals likely to be toxic showed that it could save the EPA nearly $980,000 for every toxic chemical identified.

In addition to improving the allocation of scarce administrative resources, machine-learning systems may be able eventually help in reducing some of the inevitable biases that are found with unaided human judgment. For example, in the context of the Social Security Administration’s disability adjudications, some research suggests that human decisions reflect racial disparities that tend to disfavor claimants of color. A study of just a single office within the Social Security Administration found vastly disparate rates of benefits awards, with “judge grant rates in this single location ranging from less than 10 percent being granted to...
over 90 percent.”188 If machine-learning tools are used as either substitutes for or even just complements to human decision-making, they may be able to reduce inconsistencies and other foibles that permeate human judgment.

On the other hand, the use of machine learning in governmental settings has not escaped controversy. If the underlying data contain biases—particularly as administrative data can derive from human practices and systems that themselves reflect biases and prejudices—then machine learning might reify the inequities built into the data.189

For example, concerns have arisen about inherent biases built into facial recognition algorithms, given their potential utility for law enforcement agencies.190 A recent study by the National Institute of Standards and Technology ran millions of photographs obtained from government databases through almost 200 different commercial facial-recognition algorithms.191 The study found that U.S.-developed algorithms tended to have higher rates of false positives for Asian and Black faces than for white ones (by a factor of between 10 and 100) and more frequent false positives for women than for men.192

Moreover, if algorithms rely on underlying data that are limited, or if algorithms are not designed or tested well, they may lead to a false sense of accuracy—perhaps even making decision-making more error-prone. For instance, Indiana’s experiment with automating the distribution of public benefits has reportedly resulted in widespread inaccuracies that erroneously deprived many vulnerable people of much-needed public assistance.193 Meanwhile, in 2020, a man in Michigan faced what may have been the first known wrongful arrest caused by a faulty facial recognition algorithm.194 Furthermore, reliance on large amounts of data gives rise to potential privacy violations and other abuses of power by irresponsible or oppressive governmental actors.195

192 Id.

195 See, e.g., Rashida Richardson, Jason M. Schultz & Kate Crawford, Dirty Data, Bad Predictions: How Civil Rights Violations Impact Police Data, Predictive Policing Systems, And Justice, 94 N.Y.U. L. Rev. 192, 192 (2019) (raising concerns about the use of “dirty data” from corrupt, racially biased, or unlawful police practices in algorithmic tools to support predictive policing, which can further perpetuate the biases and misbehavior inherent in the data); Shibani Mahtani, Chicago Police Take a Page From “Minority Report,” WALL ST. J. (May 12, 2017), https://www.wsj.com/articles/
In the governmental setting, the “black box” character of machine-learning algorithms seem to raise particular concerns about transparency and accountability. These concerns have driven increased oversight over the use of algorithms in governmental decisionmaking. These ways that such algorithms optimize outcomes and the solutions they support may not be readily apparent to those who they affect, which has suggested to some observers that either they be avoided in the public sphere or that government officials take extra strides to explain what these algorithms do.

These issues have motivated government bodies to scrutinize more closely how they use artificial intelligence tools—and to lay out principles that they will apply when establishing automated decisionmaking processes. City and local governments have begun to formulate frameworks for how they will use AI to aid in decisionmaking. In addition, a number of initiatives at the federal level have sought to establish guidelines for responsible use of AI. President Trump issued an executive order in December 2020 urging that federal government agencies use AI responsibly. The Administrative Conference of the United States also adopted a slate of guidelines for agencies deploying AI tools, urging administrative officials to consider issues such as transparency, bias, technical capacity, the procurement of AI systems and the data on which they rely, privacy, security, decisional authority, and oversight.

For instance, New York City was the first in the country to set up a task force to oversee the use of automated decision systems by city agencies. See generally N.Y.C. AUTOMATED DECISION SYSTEMS TASK FORCE, NEW YORK CITY AUTOMATED DECISION SYSTEMS TASK FORCE REPORT (2019), https://www1.nyc.gov/assets/adstaskforce/downloads/pdf/ADS-Report-11192019.pdf. See AI NOW INST., AI NOW 2019 REPORT (2019), https://ainowinstitute.org/AI_Now_2019_Report.pdf (flagging a variety of concerns about the “black box” nature of algorithms and the potential for harm and abuse if they are used by government agencies without fully accounting for built-in biases).

Admin. Conf. of the U.S., Statement #20, Agency Use of Artificial Intelligence, 86 Fed. Reg. 6616 (Jan. 22, 2021). These initiatives focus merely on government’s own use of AI—to say nothing of how government will regulate private-sector uses. See, e.g., Memorandum from Russell T. Vought, Acting Director, Office of Mgmt. & Budget, to Heads of Executive Departments and Agencies, Guidance for Regulation of Artificial Intelligence Applications (Nov. 17, 2020), https://www.whitehouse.gov/wp-content/uploads/2020/11/M-21-06.pdf (setting out “policy considerations” for federal agencies’ “regulatory and non-regulatory approaches to AI applications developed and deployed outside of the Federal government”). At the state level, California and Virginia have recently become the first two states to adopt data privacy laws requiring companies that use consumers’ data—including providers of AI tools—to disclose those uses and allow consumers to opt out of having their data used. See Stephan Zoder, California’s Privacy Rights Act:
Guidelines such as these are a welcome development because the deployment of artificial intelligence tools in the public sector has already encountered a number of challenges in practice. For example, a school district in Boston worked with researchers at the Massachusetts Institute of Technology to use a machine-learning algorithm to help redesign student bus schedules in a way that would have saved the district up to $15 million in annual expenses and produced schedules that were healthier for students, better for the environment, and more equitable for minority students. But the bus schedule’s “overhaul was introduced with insufficient explanation or opportunity for citizen interaction with the model,” resulting in a “public pushback [that] was strong and swift.” The school district eventually dropped the proposed scheduling changes.

In Houston, a school district ended up in court after relying on a complex algorithm—albeit not a machine-learning one—to rate teachers’ performance and justify the dismissal of teachers who rated poorly. The district relied on a private consulting firm to develop and run the algorithm, but the firm considered its “algorithms and software as trade secrets, refusing to divulge them to either [the district] or the teachers themselves.” The teachers’ union and several teachers took the district to court, arguing that the algorithm deprived them of procedural due process. They argued that, without “access to the computer algorithms and data necessary to verify the accuracy of their scores,” the district deprived them of their constitutional rights. The trial court issued only an interim decision, ruling that the procedural due process claim could possibly have merit and the teachers were entitled to take their case to a jury. The court held that “without access to . . . proprietary information—the value-added equations, computer source codes, decision rules, and assumptions—[the teachers’] scores will remain a mysterious ‘black box,’ impervious to challenge.” Although the court recognized that the consulting firm may well have been in its rights to keep its algorithms secret, it held that a jury could consider whether “a policy of making high stakes employment decisions based on secret algorithms [is] incompatible with minimum due

202 Id. at 3, 7.
204 Id. at 1176-77.
205 Id. at 1171-73.
206 Id. at 1179.
process.” Of course, the preliminary nature of the trial court’s decision cannot rule out the possibility that, had the matter gone to a jury, the school officials might have been able to put forth additional evidence that could have satisfied the teachers’ due process rights while still protecting the firm’s trade secrets.

A handful of cases in recent years have raised due process and transparency concerns over states’ use of nonlearning algorithms in making decisions to determine and often reduce individuals’ Medicaid or disability benefits. In Idaho, lawyers acting on behalf of developmentally challenged adults filed suit against the state over reductions in Medicaid payments for long-term institutional services.

The state relied on a proprietary algorithm used in setting individual budgets that were then used in calculating Medicaid benefits. Idaho initially argued that the methodology used by the nonlearning algorithm was a “trade secret” and refused to disclose it to the plaintiffs unless they signed a confidentiality agreement.

The court rejected this assertion and the parties ultimately stipulated to a preliminary injunction under which Idaho agreed to make details about its budget calculation tool available to participants in the program upon request.

The West Virginia Department of Health and Human Resources was also sued over its use of a nonlearning algorithm that determined Medicaid recipients’ budgets for the care they needed. When the algorithmically determined budgets resulted in significantly reduced benefits for the plaintiffs, they filed a class action alleging violations of due process and seeking to enjoin the use of the algorithm because they had no way of knowing the criteria it relied on to determine their budgets and therefore lacked meaningful opportunities to contest its determinations.

The court agreed and issued a preliminary injunction prohibiting the algorithm’s use, since the agency failed to disclose the algorithm’s overarching methodology, the variables it used, or how it weighted the variables.

207 Id. at 1179-80.
208 The case settled in October 2017; in that settlement, the school district noted that it had already terminated the vendor of the algorithm and agreed that it would never again fire a teacher based on a “value-added” scoring system of the kind it had used, “so long as the value-added score assigned to the teacher remains unverifiable.” Settlement and Full and Final Release Agreement at 1-2, Hous. Fed’n of Teachers, 251 F. Supp. 3d 1168 (S.D. Tex. 2017), https://www.aft.org/sites/default/files/settlementagreement_houston_100717.pdf.
210 See Bloch-Wehba, supra note 155, at 1279.
211 Id.
212 Id. In subsequent litigation, the plaintiffs moved to certify a class of similarly situated individuals; the court granted the motion and expanded the injunction to reach the entire class. K.W. v. Armstrong, 298 F.R.D. 479, 494 (D. Idaho Mar. 25, 2014). On appeal, the Ninth Circuit affirmed, holding that the district court did not abuse its discretion in finding that the notices informing the plaintiffs of the reduction in their benefits as a result of the algorithm’s determinations failed to lay out properly the agency’s rationale for the reductions. K.W. ex rel. D.W. v. Armstrong, 789 F.3d 962, 971-74, 976 (9th Cir. 2015).
214 Id. at *4, *7-9.
215 Id. at *10-12, *15.
lifted its injunction after West Virginia developed and made publicly available an alternative system which relied on matrices and allowed recipients to contest the accuracy of the variables and the overall use of the matrix.\footnote{Crouch, 2018 WL 1513295, at *6-13; see also Bloch-Wehba, supra note 155, at 1276-79.}

Individuals and advocacy groups in Arkansas, Michigan, Oregon, and Florida have brought similar claims alleging constitutional or statutory process violations.\footnote{See, e.g., Barry v. Lyon, 834 F.3d 706 (6th Cir. 2016); Brandy C. v. Palmer, No. 4:17cv226-RH/CAS, 2018 WL 4689464 (N.D. Fla. Sept. 29, 2018); Order on Motion for Preliminary Injunction, C.S. v. Saiki, No. 6:17-cv-00564-MC (D. Or. filed Apr. 19, 2017); Cahoo v. SAS Inst. Inc. (Cahoo I), 322 F. Supp. 3d 772, 786 (E.D. Mich. 2018), aff’d in part, reversed in part, 912 F.3d 887 (6th Cir. 2019); Ark. Dep’t of Human Servs. v. Ledgerwood, 530 S.W.3d 336, 342-43 (Ark. 2017); Bauserman v. Unemployment Ins. Agency, No. 333181, 2019 WL 6622945 (Mich. Ct. App. Dec. 5, 2019); see also Al NOW Inst., supra note 58, at 7-9; Al NOW Inst., supra note 197, at 35-36; CTR. FOR DEMOCRACY & TECH., CHALLENGING THE USE OF ALGORITHM-DRIVEN DECISION-MAKING IN BENEFITS DETERMINATIONS AFFECTING PEOPLE WITH DISABILITIES (2020), https://cdt.org/wp-content/uploads/2020/10/2020-10-21-Challenging-the-Use-of-Algorithmdriven-Decision-making-in-Benefits-Determinations-Affecting-People-with-Disabilities.pdf; Kate Crawford & Jason Schultz, AI Systems as State Actors, 119 COLUM. L. REV. 1941, 1944-57 (2019).} In the majority of these suits, the plaintiffs were at least partially successful in obtaining either a court order in their favor or a settlement with the government agreeing to stop the use of the algorithm in determining benefits or provide greater disclosure about its operations. It seems clear from the Idaho and West Virginia cases that government agencies will be on the thinnest ground when they disclose absolutely nothing about the algorithms they use. But both of these cases involved algorithms made up of a limited number of fully known variables that had been assigned specific weights.\footnote{The cases discussed in Part I of this Article addressing judicial use of algorithms are also obviously relevant to the administrative use of algorithms. However, just as here, none of those cases addressed any truly machine-learning algorithms.} It remains to be seen what courts will demand that states disclose when they rely on complex, machine-learning algorithms that are not so intuitively explainable. Given that due process calls for balancing,\footnote{Under current federal law, courts are expected to determine what procedural due process requires by balancing three factors: the interests of the private individual; the risk of erroneous decisions; and the interests of the government. See generally Mathews v. Eldridge, 424 U.S. 319 (1976). For elaboration in the context of algorithmic tools, see Coglianese & Lehr, supra note 1, at 40-42.} it may be that the Houston school district case comes the closest to the likely outcome in procedural due process challenges to the administrative use of machine-learning algorithms—where the ultimate judgment about the due process calculus and the balancing of interests at stake will be one for a jury to make.\footnote{As noted, the algorithm at the center of the Houston case was also not a machine-learning one.}

In addition to lawsuits raising procedural due process claims, administrative agencies that rely on machine-learning algorithms are likely to face claims of algorithmic bias based on federal statutes, such as Title VI of the Civil Rights Act of 1964, which prevents state and local governments that receive federal financial assistance from engaging in practices that have disparate impacts on protected classes. The due process and equal protection clauses of the Constitution’s Fourteenth and Fifth Amendments also prevent state and federal governments, respectively, from engaging in intentionally discriminatory practices. If agencies
are not careful, they could certainly use machine-learning tools in ways that offend existing principles of constitutional or statutory law. However, the responsible use of machine learning can probably be readily accommodated under existing principles of U.S. law.

CONCLUSION

Although the day when a judge’s role is fully supplanted by an algorithm is surely still far into the future, if it should ever completely come, the building blocks that could eventually give rise to a world of increased use of artificial intelligence by governmental entities have started to manifest themselves in state and federal legal systems across the United States. The widespread adoption of risk assessment tools in criminal cases in courts at every level of government appears to reflect an increasing comfort in allowing algorithms to inform decisions. Increasing digitization of court records could potentially provide judicial managers with troves of data for artificial intelligence programs that could analyze and possibly even facilitate future automated adjudication. The growing adoption of online dispute resolution by both the private organizations and the courts could also eventually make the public more comfortable with fully computerized and automated adjudication. The opportunities for successful application of artificial intelligence seem even greater in administrative agencies, and they are already starting to rely on machine learning tools to inform enforcement decisions, allocate social services, and manage programs.

Overall, these tools appear to have great promise. As with any tool, of course, if they are not used with care, they may give rise to further problems which may generate conflict and litigation. Public concerns have already arisen over the use of algorithms in predictive policing and in the criminal justice system more generally. The few court cases decided to date do not suggest that the judiciary will ultimately disapprove of responsibly designed and implemented machine-learning tools—and it is certainly beyond the limits of any kind of intelligence, human or artificial, to forecast with precision what the future will hold for governmental use of machine learning in the United States. Yet with the continued reliance on machine learning in other spheres of life, the public acceptability of, if not demand for, its use in the governmental sector may only increase.

221 Cf. Mulligan & Bamberger, supra note 53, at 782-83, 808-29 (proposing administrative law “as the framework to guide the adoption of machine learning governance” in light of the fact that current machine learning systems often incorporate policy choices that fail to comply with the general prohibition on arbitrary and capricious agency actions). See generally Michael L. Rich, Machine Learning, Automated Suspicion Algorithms, and the Fourth Amendment, 164 U. Pa. L. Rev. 871 (2016) (arguing that using algorithms in police investigations could raise significant Fourth Amendment concerns that have yet to be examined by courts).

222 Coglianese & Lehr, supra note 1; Coglianese & Lehr, supra note 13.

223 Dave Orr and Colin Rule, Artificial Intelligence and the Future of Online Dispute Resolution 10 (unpublished manuscript), http://www.newhandshake.org/SCU/ai.pdf (“We are still a long way away from giving an AI Lexis-Nexis access and then asking it to serve on the Supreme Court.”).